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Műegyetem rkp 5., Budapest, H-1111, Hungary.

Publisher

Budapest University of Technology and Economics

ISBN 978-963-421-870-8

Budapest, Hungary, 2021.



10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS

About the conference
Organizing Committee
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Preface
Welcome to the 10th ECCOMAS Thematic Conference on Multibody Dynamics!

The conference series has a remarkable history. It is home to professionals specialized in different technologies and
applications of multibody dynamics not only from Europe, but from all over the world. Our conference will be the 10th
in a successful series of meetings held in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011),
Zagreb (2013), Barcelona (2015), Prague (2017), Duisburg (2019). The organizers are grateful for the opportunity of or-
ganizing the ECCOMAS Thematic Conference on Multibody Dynamics in 2021 in Budapest. In spite of the difficulties
caused by the pandemic, we managed to keep the biannual structure of the conference series.

Multibody dynamics plays a central role in the modeling, analysis, simulation and optimization of mechanical sys-
tems with a large variety of engineering applications. The conference serves as an excellent opportunity for researchers
worldwide to exchange ideas in multibody dynamics concerning theoretical and application aspects such as multibody
kinematics, formalisms and efficient numerical methods developed for multibody problems, dynamics of flexible multi-
body systems, slender structures, contact problems and impacts, mechatronics, robotics and control, vehicle dynam-
ics, aerospace dynamics, system identification, optimization and sensitivity analysis, validation, software development,
biomechanics, gait analysis and education. The conference also provides a platform for sharing novel ideas within the
continuously growing multibody research community.

We faced major and unique challenges with the organization of the conference. As you know, the event was originally
planned to take place in the summer of 2021 in Budapest. However, due to the unforeseen, special circumstances of the
last two years imposed on us by the pandemic, we had to move the conference to the end of the year 2021, and eventually,
we had to decide to go with a fully online event. Despite the online nature of the conference, the number of presentations,
abstracts and papers received form 27 countries is still high, which shows the activity and enthusiasm of the researchers
in the multibody community.

The organizers are especially thankful for the contribution of the members of the Scientific Committee during the
thorough review process of the 40 full papers received from 15 countries.

Despite the challenges and the alternative form of the conference, we hope that you enjoy the event and find the
Proceedings as a valuable professional material when studying in details the background of the lectures of your interest.

József Kövecses,
Gábor Stépán,
Ambrus Zelei,

editors
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ABSTRACT 

Human locomotion involves a complex integration of muscles activity, central 

nervous system, and sensory information. Attempts to describe and understand the 

biomechanics of human locomotion have been made experimentally and 

mathematically (simulation). Mathematically, biped models with various 

complexities have been used to study human locomotion using different numerical 

methods and many features of human locomotion have been verified. In this paper, 

an optimization based prediction of human gait with its essential features using 

simple biped with torso is formulated. The biped can “qualitatively” mimic many 

features of human locomotion including the general behavior of human gait during 

running and walking.  

Keywords: Discrete Mechanics, Optimization, Gait, Biped, Torso. 

1. INTRODUCTION 

Many researchers have studied human gait by modeling human body as a simple mechanical 

system represented mathematically as biped models that can describe the basics of human 

motion. Many studies in the literature on humanoid robots have focused in deriving the model 

using standard continuous-time mechanics. In [1], a gait trajectory of biped model in continuous 

time domain has been provided using simple technique that is based on the symmetric features 

in the dynamics of this compass-type model. The motion obtained by their technique resembles 

the phenomenon of a passive dynamic walking, since the motion contains swing phase and a 

foot collision taking place one after another.  Srinivasan et. al., [2] have simulated human gait 

using an inverted pendulum model with the assumption of a rigid human body and massless 

legs. The model in [2] generated the energy-based optimal gait of three distinct types of human 

gait that are; i) walking, ii) inverted pendulum run, and iii) running. The discrete mechanics, on 

the other hand, have been recently applied to derive biped models. Compass-type biped model 

and discrete mechanics are used in [3] to formulate a gait generation problem. They have 

verified the generation of a stable gait by formulating a constrained nonlinear optimization 

problem in which the model minimizes the angular velocities using both impact and swing 

phases models. In 2015, Sun et. al. [4] have studied periodic gait optimization problem of the 

bipedal walking robot using discrete mechanics. The optimization problem was numerically 

solved using a class of global and feasible sequential quadratic programming algorithms [5][6]. 

Their study has shown that the algorithm can converge to a stable gait cycle by selecting a 

proper initial guess of the gait [4]. 

Biomedical researches have also focused on applying optimization techniques and algorithms to 

predict various types of human motion and dynamics. For a stable and a converging algorithm, 

several factors should be considered in the optimization routine such as the surrounded 

environment reaction forces and system inertia forces. Optimization algorithms can be applied 

for gait prediction, lifting, pushing, and pulling movements, to name a few. Prediction of these 

motions requires different optimization formulations and two or more tasks can be combined 

https://doi.org/10.3311/ECCOMASMBD2021-116
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together in a single optimization problem [7]. 

Numerical simulations are actively used today in different engineering and science fields to 

simulate the behavior of dynamic systems which was commonly involved to solve continuous 

models when simulating dynamical systems. However, when long-time simulation is required, it 

is frequently necessary to focus on preserving the qualitative behavior of the system such as 

transformation between velocity and momenta. The idea behind preserving energy in discrete 

mechanics is that, unlike other numerical methods, we discretize the basic principle of the 

mechanical system not the final differential equations. Therefore, symplectic methods [8] [9] 

(i.e., methods that are based on energy conservation) are becoming more widely used to 

simulate systems that have long-time simulation features such as humanoid robots. With these 

types of systems, it will be difficult to involve non-symplectic methods such as Runge-Kutta to 

simulate the behavior of those systems because it dissipates energy with time and hence 

increases the numerical error in the simulation [10].  To overcome the numerical errors with 

long- time simulation, discrete Lagrangian mechanics is introduced by considering a discrete 

Hamilton’s principle [9][11]. In discrete mechanics, the Euler-Lagrange equations of the 

nonlinear mechanical systems are discretized. This way of formulating the equations of motion 

in mechanics has the capability of analysis with great compatibility with computers because of 

fewer errors in judgment with other similar numerical methods such as Euler method and 

Runge-Kutta method [7]. Furthermore, simulations can be performed for relatively large 

sampling times. Due to their symplectic nature, discrete mechanics are perfect for simulations 

that take long time. Therefore, the obtained discrete trajectories exhibit a good energy 

performance with time [12]. 

2. MATHEMATICAL MODEL 

In this work, the developed model is based on the concept of the inverted pendulum model with 

the torso in order to generate more realistic information by mimicking human locomotion. The 

derivation of the model is based on the principle of discrete mechanics since it considers as a 

symplectic method that preserves momenta associated to symmetries of the system, and it also 

has perfect long-time energy compared to other numerical methods as discussed previously. 

2.1. Discrete mechanics  

In discrete Lagrangian, a path ( )q t for [0, ]t T is changed to a discrete path

0:{ ,..., ,..., }k Nq t t t T , where k   and N  . ( kq  is viewed as an estimation of ( )kq t ). 

The Lagrangian ( )L t  if estimated on each interval 1[ , ]k kt t   by a discrete Lagrangian

1( , , )d k kL q q h ; where, h is the time interval between two samples [9]: 

 1k kh t t  . (1) 

The formula of discrete Lagrangian is obtained by estimating the integral of the continuous-time 

Lagrangian over a small interval of time h using the midpoint rule [12]. 

 1 ,
2

k kq q
q  
  (2) 

 1 ,k kq q
v

h

 
  (3) 

 
1 1 1

1( , ) ( , ) ( , ).
2

k

k

t
k k k k

d k k
t

q q q q
L q q L q v dt hL

h

  


 
   (4) 

Then we can approximate the discrete action dS  as a sum of discrete Lagrangian and using 

Hamiltonian principle: if the path is slightly “varied”, action is unchanged to the first order [13]. 

 

1

1

0

( , ) 0
n

d d k k

k

S L q q 






  . (5) 

Then, we minimize dS with respect to perturbations of trajectories. Using the boundary 

conditions for q , we now have summation that must vanish for all values of q and one gets 

https://doi.org/10.3311/ECCOMASMBD2021-116
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the discrete Lagrangian formula [9]: 

 
2 1 1 1 1 1( , ) ( , ) ( , ) ( , ) 0d k k d k k d k k d k kD L q q f q q D L q q f q q 

       . (6) 

Where,
1( , )d k kf q q


and 

1( , )d k kf q q


left and right discrete forces, respectively, and:  

1 1( , )d k kD L q q  : is the first derivative with respect to the first argument of dL (i.e., kq ). 

2 1( , )d k kD L q q : is the first derivative with respect to the second argument of dL (i.e., kq ). 

And we have the discrete force related to the continuous force as the follows: 

 1 1 1
1 1 1 1( , , , ) ( , , , ) ( , )

2 2 2

k k k k k k
d k k k k d k k k k c

q q q q t th
f q q t t f q q t t f

h

    
   

  
  . (7) 

2.2. Biped model 

Mechanical and mathematical biped models have been used to describe human basic motion. 

Although many studies have concentrated on the lower extremities in their models, there are 

two reasons that invite one to study the role of the torso in gait. First, most of the body weight is 

concentrated in the upper part of the body. The torso makes about 70% of total body weight. 

Second, the center of gravity of the whole body is in the upper body specifically in the torso, 

approximately 33 cm above the hip joint [14]. 

The proposed model shown in Fig. 1 has two point masses, one for the hip and the other for the 

rigid torso, and the two legs are considered to be massless. The hip mass 𝑚𝐻 has a position 

( , )H Hx y and the torso a position ( , )T Tx y at time 𝑡. The motion of the torso is controlled via a 

torque ( )t  applied between the torso and the stance leg. A single telescopic axial actuator is 

used to combine flexion of the three joints in the leg: hip, knee, and ankle, which consequently 

cause variations of the leg length ( )q t . This actuator transmits a compressive time-varying force

( )F t and both legs are assumed to have identical profiles of leg length and ground reaction 

force. 

 

 
Figure 1. Biped model with a torso  

The discrete Euler Lagrange equation of the biped is given by: 
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Note: 1 1 1 1k k k     , 1 1 1 1k k k    , 2 2 1 2k k k     , 2 2 1 2k k k    ,

1k k kq q q   and 1k k kq q q  . 

The Discrete Euler Lagrange formulation is used to find the equations of the biped by assuming 

only one-foot contacts the ground. 
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Where, 
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The discrete forces are the Ground Reaction Force (GRF) and the torque acting on the leg and 

the torso. 

 1 1 1 2 1 2 1 1 1 1 2 2 1 1( , , , , , ) ( , , , , , )
2

d k k k k k k d k k k k k k

h
f q q f q q

F



         

     

 
 

  
 
  

. (12) 

The biped model has the dimensions descried in the following table. 

Table 1. Dimensions of biped model with a torso 

Symbol Description  Value 

m Total body mass (Kg) 10 

Tm  Mass of the torso (Kg) 2

3
m  
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Hm  Mass of the hip (Kg) 1

3
m  

L Distance from hip to the center of mass of the torso (m) 0.46 

R Nominal Leg Length (m) 1 

g Gravitational acceleration (m/s) 9.81 

3. OPTIMIZATION AND SIMULATION RESULTS 

During human locomotion, the body consumes energy to perform work. Earlier studies tried to 

link the metabolic requirements of walking and running to the positive mechanical power 

required to raise and accelerate the body’s center of mass and accelerate the limbs relative to the 

center of mass in animals and humans [15]. Metabolic cost of transport is the metabolic energy 

required to move a unit body weight or mass a unit distance. Given a specific step size d and if 

the biped starts its step with the nominal leg length R+q (1) =R; we search for the control 

approach that gives the minimum cost of transport that is 

 

1 2

1

( )( ) ( )( )

2

k k k
k kN

k

q
F t t

h h h
J h

mgd

 




  
 

 . (13) 

Subject to dynamics constraints of the biped and satisfying periodicity constraints of the gait: 

• The torso starts and ends the step with the same position and velocity. 

 2 2( 1) (1)N   , (14) 

 2 2 2 2( 1) ( ) (2) (1)N N

h h

     
 . (15) 

• The hip starts and ends the step with the same velocity in both X and Y directions. 

 

1 1
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(17) 

• The hip starts and ends the step with the same position in Y direction. 

 1 1( ( 1))cos( ( 1)) ( (1))cos( (1))R q N N R q      . (18) 

• The difference between the final and initial positions of the hip is the step length d. 

 1 1( ( 1))sin( ( 1)) ( (1))sin( (1))d R q N N R q       . (19) 

In addition to the pervious constraints, we represent the flexion and extension of knee and ankle 

joints with a maximum variation of 10% of the nominal length of the leg [16]. 

 1 1MaxExt q MaxExt    . (20) 

Where, MaxExt is the maximum Extension of the length. 

The optimization procedure was run with different initial conditions to search for the optimal 

solutions as we vary the desired step size d and biped speed v.  For each set of these two 

parameters, the optimizer converges to a distinctive result (see sections 3.1 and 3.2) that 
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describes the optimal gait. 

3.1. Walking 

Humans tend to walk at low speed and the walking gait can be identified from the profile of 

GRF (Ground Reaction Force) of the gait. Fig. 2 shows the gait pattern for 0.6 m step size with 

velocity of 1.566 m/s. The optimal gait for these parameters, based on the minimum cost of 

transport, is walking. The profile of normal GRF has two symmetric peaks that represent two 

phases of gait cycle, the heel strike and push off. These two phases occur at the beginning and 

the end of gait cycle [17]. 

 

 

Figure 2. Ground Reaction Force (GRF) of walking 

 

In walking, the torso movement in sagittal plane exhibited one full oscillation from backward to 

forward position, or the other way around, during a stance phase as shown in Fig. 3. At touch 

down of one foot, the torso moves in the direction of the same side and reached an extreme 

position during the period of a single support. Experimentally, this pattern of oscillation of torso 

angle is found to be approximately asymmetric [18]. Since the motion of the torso during 

walking is found to be very small, the oscillations are difficult to observe because of its small 

amplitudes [18]. 

 

 

Figure 3. Torso angle during walking 

Fig. 4 shows that as the step size increases, the angular displacement of the torso for the biped, 

peak-to-peak, also increases. For human as reported in [19], this increment in step size causes an 
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increment in the range of motion of body segments and joints, which include the torso as well. 

 

 

Figure 4. Oscillation of torso at different walking step sizes 

Moreover, as the speed of walking increases, the amount of torso angular displacement 

decreases as shown in Fig. 5. This phenomenon is mainly attributed due to the walking speed, as 

it increases; it leads to an increase in the range of motion of the lower extremity joints to 

decrease the vertical shift in the body center of gravity, which is located in the torso [20]. The 

body behaves in this way in order to minimize the cost of transport by minimizing the 

movement of the center of gravity [15]. 

 
Figure 5. Angular Displacement of torso at different walking speed 

3.2. Running  

In legged locomotion, for a human to move with higher speed they must contract their muscles 

faster in order to move their limbs more quickly and reduce the amount of time that the feet are 

in contact with the ground. This process requires more metabolic energy. The optimal gait for 

high values of speed is impulsive run gait. In this gait, the biped express a high value and 

impulse of ground reaction force that represents the small stance phase with the start of the step. 

After this high impulse force, the profile of ground reaction force shows a zero force until the 

end of the step that represents the flight phase. This high impulse simulates the fast and strong 

interaction of the foot with the ground. Fig. 6 shows the GRF for impulsive run gait for the case 

of speed V = 7 m/s and step length D = 0.2 m. 
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Figure 6. Ground reaction force and torso angle at high running speed (7 m/s) 

 

Between every two impulsive stance phases, there is a flight phase. In this flight phase, the two 

legs are off the ground and the body flies in the air, so the ground reaction force is zero in this 

case [21]. During impulsive run, the body performs negative work to reduce the reaction force 

to zero in the flight phase and then performs positive work to increase the reaction force again 

in the next stance phase. In running with low speed, the foot contact with the ground is observed 

when the torso is almost at its most forward position. However, in running with high speed (e.g., 

7 m/s), the touchdown of the foot occurred when the torso is in the peak of the backward 

position and it is just started to lean forward [18] as shown in Fig. 6. 

 

 

Figure 7. Ground reaction force and torso angle at low running speed (2.5 m/s) 

 

Fig. 8 shows a reduction in the angular displacement of the torso as the speed increases for the 
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aim of minimizing the cost of transport by minimizing the movement of the center of gravity. 

 
Figure 8. Angular displacement of torso at different running speed 

4. CONCLUSIONS 

Although the proposed model is simple in terms of the involved joints, however, both gait 

optimization and the biped were able to simulate various features of the human locomotion. The 

model was able to show the normal profile of the ground reaction force for both running and 

walking including the oscillation of the torso during both types of gaits. Moreover, the 

simulation results show that the movement of torso changes with changing the step size and 

walking speed. Increasing speed of either walking or running tends to reduce the total 

movement of the torso in the sagittal plane. Studies have shown that this reduction is a result of 

optimizing the energy required to walk or run. The simulation results showed that the initial 

position of the torso in running differs as the speed change and the trajectory of the torso 

changes.  
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ABSTRACT 

Inverse Kinematics Analysis (IKA) is a powerful tool to study mechanical and 
biological systems, since it can be used to adjust the position and orientation of each 
segment of the model to the experimental data, enabling to achieve reliable and 
consistent model positions. Optimization-based methods have been successfully 
applied to perform IKA in intricate biomechanical systems. However, these 
methods tend to be more complex requiring more computational power and CPU 
times. This work presents an alternative methodology based on the use of Fully 
Cartesian Coordinates (FCC) and Mixed Coordinates (MC), alongside with a 
weighted least square approach to solve the IKA problem. The proposed 
methodology was applied in the study of a gait movement for a planar full body 
biomechanical model. The Root Mean Square Error (RMSE) between the 
experimental and computed positions was calculated both for the proposed method 
and for a forward kinematic analysis (FKA) carried out with pre-calculated angular 
drivers, resulting in smaller average differences in the former case (IKA: 0.018 m 
FKA: 0.019 m). Based on the obtained results it is possible to conclude that the 
proposed methodology is an accurate, efficient, and reliable approach to perform 
the IKA of biomechanical models, assuring the kinematic consistency between 
experimental data and the biomechanical model, and, at the same time, avoiding the 
usual drawbacks of the use of angular drivers or complex optimization techniques. 

Keywords: Inverse Kinematics, Fully Cartesian Coordinates, Mixed Coordinates, 
Least Square Approach. 

1. INTRODUCTION 
Kinematic analysis (KA) is a powerful tool used in the study of biomechanical systems, since it 
allows for the computation of the orientation of the model segments, trajectory of specific 
points, angular displacement of joints, among other variables of interest. Two approaches can be 
used to perform the kinematic analysis of multibody systems, namely, forward kinematics (FK) 
or inverse kinematics (IK). In the first case, the model is guided using linear and angular drivers 
calculated in a previous step. Afterwards, the consistent generalized coordinates are obtained by 
imposing the kinematic constraints that define the model. On the other hand, in IK the position 
and orientation of each segment is computed by minimizing the difference between the 
experimental data and a set of points belonging to the model, namely the coordinates of the 
system or other points of interest. This procedure allows for the fitting of the computational 
model to the experimental data. 

In biomechanical models, FK should be applied with caution due to experimental errors 
associated to the measurement, in particular soft tissue artifacts (STA) [1]. The STA refers to 
the motion of the markers on the surface of the body with respect to the underlying bones due to 
inertial effects, skin deformation and sliding, gravity and muscle contraction [2]. Moreover, 
STA is task- and subject- dependent, which makes standard filtering techniques ineffective [1]–
[3].  
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Andersen et al. (2009) showed that the use of methodologies to minimize the errors between 
experimental markers and model points result in significant differences in the kinematic 
outcomes when compared with standard methods. On its turn, these differences can lead to large 
errors and inconsistencies during dynamic analysis [3]. Consequently, a method that enables to 
adjust the model to the output of the system in study is of particular interest for the 
biomechanics area, since it can minimize the errors associated to the experimental acquisition of 
anatomical points that constitute the biomechanical model. To address this issue, several 
methods have been proposed, being the most common based on optimization techniques [4]. 

In this work, a new approach, based exclusively on kinematic constraints and least-square 
minimization, is proposed to perform the KA of biomechanical systems. The methodology 
considers the use of angular coordinates to model the kinematic drivers of the system. These 
coordinates are referred to as ‘mixed coordinates’ and complement the set generalized 
coordinates used by the Fully Cartesian Coordinates (FCC) formulation adopted [5]. This 
method enables to perform an IK analysis and to determine simultaneously the angular drivers 
of the model. It allows also for the minimization of the error between experimental and 
computational points, ensuring a better fit of the model to the experimental data.  

In order to assess its applicability and reliability, the MC method was applied in the KA of a 
gait movement for a planar biomechanical model. The results were posteriorly compared with 
the ones obtained using FK with angular drivers and with the experimental data. 

2. METHODS 

2.1. Fully Cartesian Coordinates 
Fully Cartesian Coordinates are a development of Natural Coordinates [4] proposed in [4]–[7] 
They inherit their two major characteristics, i.e., multibody systems are still described using 
only the Cartesian coordinates of points and unit vectors, and the kinematic constraint equations 
are quadratic or linear, thus generating linear or constant contributions to the Jacobian matrix. 
However, in contrast to the Natural Coordinates formulation, where each rigid body might share 
points with its adjacent bodies, in FCC each rigid body is defined independently. As so, when 
applied in planar models, four generalized coordinates are required in its definition, namely the 
Cartesian coordinates of a point located at its center of mass (CoM) and the Cartesian coordi-
nates of a unit vector representative of its orientation. A detailed description of the FCC formu-
lation can be consulted in [5], [8]. 

2.2. Mixed Coordinates 

Within the scope of the experimental analysis of human movement, the traditional KA resorts 
on the use of experimental trajectories/orientations measured using markers/sensors placed on 
specific points of the subject in analysis. Since these sensors can move with respect to the 
anatomical landmarks they refer, non-consistent positions can arise from the KA. MC 
methodology allows for the minimization of these errors, enabling to determine a position 
consistent with the defined model and experimental data. 

The MC formulation is defined as a combination of FCC with generalized angular coordinates. 
These coordinates represent the angular degrees-of-freedom (DOFs) of the kinematic pairs of 
the model, being treated also as generalized coordinates of the system (q). For a general rigid 
body, the extended generalized coordinates’ vector becomes: 

 𝐪𝑖 = {𝐫𝑖𝑥 𝐫𝑖𝑦 𝐮𝑖𝑥 𝐮𝑖𝑦    𝜃𝑖}𝑇  (1) 

where 𝐪𝑖 is the vector of generalized coordinates of body i, 𝐫 is a vector that contains the 
cartesian coordinates of the center of mass of body 𝑖, 𝐮 is a unit vector that defines body 𝑖 
orientation and 𝜃𝑖 is the angular driver between vector 𝐮 from body i and a unit vector 
belonging to other rigid body (ground body included). 

The introduction of MC coordinates leads to an augmented vector of generalized coordinates of 
the system, since a new angular coordinate is appended, per rigid body, to the already existent 
vector of generalized coordinates. Therefore, additional kinematic constraints need to be added 
to the MBS to solve the IK problem. These will be introduced in the form of trajectory 
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constraints that map the experimental coordinates of points of interest of the model, such are the 
markers coordinates, to the rigid body local reference frame, e.g., for a given point P belonging 
to rigid body i, one have: 

 𝚽 =  𝐂𝑃𝑖𝐪𝑖 −  𝐫𝑃∗(𝑡) = 𝟎 (2) 

where 𝐂𝑷𝒊 is a constant transformation matrix that relates the global coordinates of point P, 
obtained experimentally and denoted by 𝐫𝑷∗(𝒕), with the generalized coordinates of body i [5]. 

The inclusion of trajectory constraints is of particular relevance on the analysis of 
biomechanical MBS, since they can relate directly with position of the joints or the trajectory of 
the markers used in the subject. Moreover, the methodology enables to obtain directly the 
generalized coordinates of the system, needed to perform the dynamic analysis, and the 
kinematic angular drivers. This issue is particularly useful, since if the biomechanical model is 
defined according with the ISB recommendations [9], [10], the methodology provides directly 
the joints angles, which are one of the variables usually evaluated during the biomechanical 
analysis. 

An important aspect of the MC methodology is that it only requires surgical changes in the 
structure of the angular driver constraint equations of the FCC formulation to become 
implemented. More precisely, instead of using angular drivers as inputs to control the DOFs of 
the system, the angular constraints will now explicitly depend on the newly added angular 
generalized coordinates. This action will result in an additional contribution to the Jacobian 
matrix per mix coordinate, i.e. the partial derivative of the angular driver constraint equation 
with respect to the mix coordinate 𝜽, as well as an additional term in the contribution to the γ 
vector of these constraints (see Table 1). 

Table 1. Constraint equations (line 1), contributions to Jacobian matrix (line 2) and to the RHS 
of the velocity and acceleration vectors (lines 3 and 4) for two angular constraints (dot and cross 
product) using MC formulation (note that 𝐮� is a vector orthogonal to u, such that 𝐮 × 𝐯 = 𝐮�𝑇𝐯) 

Angular Driver 

           Dot Product (DP) Cross Product (CP) 

Φ(𝐪) 𝐮𝑇𝐯 − cos(𝜃) 𝐮�𝑇𝐯 − sin(𝜃) 

𝚽𝐪 [𝐯𝑇 𝐮𝑇 sin (𝜃)] [−𝐯�𝑇 𝐮�𝑇 − cos(𝜃)  ] 

ν 0 0 

γ −2�̇�𝑇�̇� − cos(𝜃)�̇�2 −2�̇��𝑇�̇� − 𝑠𝑖𝑠(𝜃)�̇�2 

 

The addition of the trajectory constraints results in an overconstrained system, as each relation 
contributes with two equations to the kinematic constraints vector 𝚽. Different methods can be 
applied to solve the overconstrained system of equations. The one followed in this work 
considers the use of a weighted least squares approach (WLS) in tandem with the Newton- 
Raphson method (NRM). This approach has the main advantage of solving directly the IK 
problem, without requiring the use of optimization algorithms, such as the one presented in the 
work of Andersen et al. [11]: 

 𝐪�WLS = (𝚽𝐪
𝑇𝐙𝚽𝐪 )−1𝚽𝐪

𝑇𝐙 𝚽 (3) 

where 𝚽𝐪  is the Jacobian matrix of the system, 𝐙 is the weights matrix and 𝚽 is the vector of 
kinematic constraints. 
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The use of a weighted approach presents also the advantage of allowing for the definition of 
different weights for each kinematic constraint. When applied from a biomechanics perspective, 
the definition of different weights for the trajectory constraints can be used to tune the model to 
the experimental data, forcing the analysis to track the experimental markers with more 
relevance or those that are less prone to experimental errors. In a similar way, points 
characterized by higher levels of STA can be defined with lower weights, being the position of 
the model to these markers adjusted by the fulfillment of the remaining kinematic constraints 
which are related with the definition of the topology of the biomechanical model. 

2.3. Implementation of the FCC Formulation with Mixed Coordinates 

The FCC formulation was implemented in an in-house software [5] developed using Python 
language (v3.7.10) [12]. To solve the IK analysis, the iterative NRM alongside with the WLS 
routines implemented in the numpy library (numpy.linalg.lstsq) was used. To initially test the 
method, the nonzero elements of the positive-definite weighting diagonal matrix W were set to 
1.0 as presented in the work of Aguiar et al [13].  

The performance of the Mixed Coordinates formulation was evaluated by applying it in the KA 
of a planar full body biomechanical model. The RMSE between the cartesian coordinates of the 
experimental points, representing the anatomical joints and other distal points, and the KA 
outcomes was computed for each joint. In order to explore the computational differences 
between methods, the same analysis was performed for the results obtained using a FK analysis 
with angular drivers. Moreover, the time required to perform the analysis and the number of 
iterations of the NRM were also analyzed. Finally, the model joint angles were statistically 
compared with the values presented in Winter [14] by calculating the intraclass correlation 
coefficient (ICC). 

2.4. Experimental Data Acquisition 
The FCC formulation with Mixed Coordinates proposed previously was applied to the study of 
the gait patterns of one healthy volunteer to evaluate its performance. An informed consent with 
a detailed explanation of the experimental protocol was signed by the volunteer and the 
subject’s participation on the study was dependent on the acceptance of such informed consent. 

Kinematic data was acquired using an optoelectronic motion capture system composed by 14 
Infrared ProReflex 1000 cameras (Qualisys©, Göteborg, Sweden), with an acquisition frame 
rate of 100 Hz. Prior to data acquisition, the subject performed an adaptation period to the 
experimental setup. Afterwards, a 15 seconds static trial was performed to collect the most 
relevant kinematical model parameters, followed by three gait cycles. 

A biomechanical model with 12 segments, based on the one presented in Pamiés et al [15], was 
implemented. A marker set protocol composed by 68 markers was designed to allow for the 
driving of all the DOFs of the model. The elbow, wrist, knee, and ankle joint centers were com-
puted as the midpoint of the retro reflective markers placed on lateral and medial bony land-
marks of the respective joints. The hip joint center was computed using the regression method 
proposed by Davis et al. [16]. The trajectories of the elbow and knee markers were reconstruct-
ed using clusters of markers placed on the thigh and upper arm. 

The coordinates of the markers were filtered using a 2nd order low-pass Butterworth filter with a 
cut-off frequency of 6Hz. All necessary calculations were performed using in-house scripts 
developed in MATLAB (MathWorks©, Natick, MA) and Python 3.7 [12]. 

3. RESULTS 

No problems were found, related with the modelling procedure and the convergence of the 
method, during the IKA of the planar biomechanical model. The average errors associated with 
the position of the joints were similar in the IK analysis with both formulations. On average, 
both methodologies present identical accuracy. However, the maximum error is higher when 
using FKA with angular drivers (FCC). 
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A propagation of errors along the gait cycle was observed when using the second method, in 
particular in the more distal points of the kinematic chains, while the method with MC coordi-
nates presented a more consistent response with the experimental data (see Fig. 1). 

 
Figure 1. Representation of experimental and computed right knee joint center trajectory throughout the 

gait trial (upper and lower left figures) and respective Root Mean Square (RMSE) (right figure). 

Table 1. Average Root Mean Square Error (RMSE) between the experimental coordinates of each joint 
center and its estimation based on the consistent generalized coordinates of the model 

 RMSE (m) 

 Neck Shoulder Elbow Hip Knee Ankle Average Max 

Formulation  - R L R L R L R L R L   

FCC 0.0 0.009 0.037 0.011 0.008 0.012 0.011 0.032 0.028 0.026 0.028 0.018 0.037 

FCC + MC 0.0 0.015 

 

0.023 0.017 0.016 0.026 0.026 0.025 0.024 0.021 0.023 0.019 0.026 

 
Table 2. Maximum Root Mean Square Error (RMSE) between the experimental coordinates of each joint 

center and its estimation based on the consistent generalized coordinates of the model 

 RMSE (m)   

 Neck Shoulder Elbow Hip Knee Ankle Average Max 

Formulation  - R L R L R L R L R L   

FCC 0.0 0.013 0.042 0.027 0.023 0.034 0.030 0.066 0.053 0.059 0.052 0.036 0.066 

FCC + MC 0.0 0.015 0.024 0.017 0.017 0.027 0.026 0.026 0.024 0.023 0.032 0.021 0.032 

 

Regarding the CPU times, the FKA with FCC took 4.49s and approximately 4 iterations per 
time frame to obtain the solution using the NRM. On the other hand, the IKA with MC required 
12.95s and an average of 8 iterations. Although both methods use a least square approach to 
obtain a solution to solve the problem, these differences could be explained by the higher di-
mension of the Jacobian matrix in the MC formulation (FK: 𝚽𝐪[58x48], IK: 𝚽𝐪[82x60]) and the 
overconstrained nature of that methodology. 

https://doi.org/10.3311/ECCOMASMBD2021-245

20



4. DISCUSSION 
In this work, a methodology based only on kinematic constraints and least square minimization, 
is presented to compute the IKA of biomechanical systems. When compared to traditional IK 
techniques, the FCC + MC methodology presents some innovative aspects, such as the simulta-
neous computation of the generalized coordinates and angular drivers, while assuring the kine-
matic consistency of the model. This procedure can be achieve without the need of a pre-
processing step to obtain a kinematic consistent model from inconsistent experimental data [17].  

This feature results from the introduction of trajectory driver equations and angular coordinates 
in the vectors of kinematic constraints and generalized coordinates of the system. The trajectory 
driver equations map the experimental coordinates of the points of interest with the associated 
trajectories and orientations of the rigid segments of the biomechanical model. On its turn, the 
angular generalized coordinates will represent the angular DOFs of the kinematic pairs of the 
model, which will be calculated during the IKA. These modifications in the number of general-
ized coordinates of the system lead to an overdetermined system, which requires a least square 
approach to find a solution during the IKA. To this purpose an WLS approach was used follow-
ing the works of Aguiar et al [13], Mantovani et al [18] and Lathrop-Lambach et al. [19]. This 
method enables to solve directly the linear kinematic constraints, while it simultaneously mini-
mizes the trajectory equations, avoiding the need for complex optimization algorithms. 

In the present study, one trajectory constraint was used per joint of the model. However, the 
method can be easily adapted to consider more points, enabling to fit the model to a cloud of 
points of interest. The points can also be defined such as the biomechanical model has a direct 
relation with acquisition protocol used during the experimental trials. 

The accuracy of the kinematic reconstruction using the FCC with MC is similar however the 
RMSE value along the cycle is more stable than when only FCC are used. This is the direct 
result of the minimization of the distance between the model points and experimental data in-
troduced by the method. These findings are confirmed by the lower RMSE values. A maximum 
error of 0.066 m was found for the knee joint, however, on average, all errors are inferior to the 
error values reported by Ausejo et al [20] as acceptable in motion reconstruction (5 to 25 mm). 

From a computational point of view, the augmentation of the vector of generalized coordinates 
due to the inclusion of the angular coordinates and the increase of the number of kinematic con-
straints results in a complex problem to solve. On average an increase of the number of itera-
tions and time spent per time step was observed in the IKA. However, it is important to note 
that the processing time spent to obtain the initial angular drivers in the FKA case was not in-
cluded, while in the proposed IKA approach the reported time already considered all the re-
quired steps to perform the kinematic analysis and obtain the joint angles and generalized coor-
dinates of the system. Moreover, despite this increase in the complexity of the problem to solve, 
the number of iterations per time frame is still reduced, attesting the computational efficiency of 
the method.  

STA is one of the of the most common sources of errors in motion analysis [21], [22]. These 
inaccuracies can lead to significant errors and inconsistencies during the computation of the 
kinematic outcomes and, consequently, also on the dynamic results [23]–[25]. To overcome this 
problem, several methods have been proposed to reduce these experimental errors, being the 
most commons based on optimization techniques [26]. A different methodology is followed in 
this work, as only kinematic constraints and trajectory controls are applied. This approach ena-
bles to adjust the coordinates of the joints and other distal points simultaneously based on the 
minimization of distances between these and the equivalent experimental points and the kine-
matic constraints. 

Besides reducing possible errors introduced by the STA, this adjustment of the experimental 
data to the biomechanical model enables to correct also errors introduced by the placement of 
markers on positions different from the ones defined in the begin of the analysis (e.g., fall of 
markers during the trial). Since the biomechanical model is defined using kinematic constraints 
based on measures acquired during the statical trial, errors in the placement of the markers will 
be partially corrected by the fulfilling of the kinematic constraints that define the rigid bodies 
and joints. 
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In addition, IKA avoids one of the main drawbacks of the typical FKA based on angular drivers, 
namely the propagation of errors along the kinematic chain, i.e., experimental errors will be 
passed continuously to the child bodies, resulting, in general, in higher distances between the 
experimental and model points in the distal joints. 

From a modelling perspective, the use of the FCC with MC presents also other advantages, as 
the points used in the trajectory constraints can be defined such as they have direct relation with 
markers used on the common marker set protocols. Moreover, due to the simplicity of the FCC 
in the modelling of biomechanical models, the angular drivers can be defined to match the 
normal convention of the joint angles, computing them directly while solving the IKA. These 
characteristics are of particular relevance for the biomechanics community. By providing a 
methodology that computes simultaneously the joint angles and has a direct relation with the 
acquisition protocols, the pre-processing of the experimental data is simplified, facilitating its 
use. 

Despite its promising results, the present study was based on a minimal dataset. Future studies 
with larger data samples should be carried out, as well as an extension to 3D models, to further 
validate the methodology. 

5. CONCLUSIONS 
This study presents a methodology to perform inverse kinematic analysis of multibody systems 
based on FCC with MC. This approach, based solely on kinematic constraints and a WLS 
method, allows for the determination of the consistent generalized coordinates, while 
simultaneously minimizing the error between the experimental and computed data.  

In the presented case, the accuracy of the kinematic reconstruction using the FCC with MC is 
significantly higher than when only FCC are used, and therefore, it is possible to conclude that 
the proposed methodology provides an accurate, efficient, and reliable approach to perform 
kinematic analysis of human motion, avoiding the problems related with the use of kinematic 
drivers. Moreover, the IKA considering the FCC+MC formulation presents the advantage of 
computing the angular drivers that rule the system, without a pre-processing step. 
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ABSTRACT

Exoskeletons for the lower back are promising tools to support workers during heavy
lifting tasks. Their development process faces several challenges. It is still not known
which criteria the support must meet to prevent low-back pain and how users of dif-
ferent body stature and execution of lifting movements influence it. Thus, studying
these factors needs an extensive testing on the human body and every considered de-
sign concept needs already a sophisticated prototype that subjects can wear for several
hours. To overcome this issue, we propose a method using multibody dynamics and
optimal control to optimize the design of an existing prototype (PO) as well as eval-
uate a new concept (DC) that incorporates motors at the hip joint. A dynamic model
of the prototype with matching torque generation was developed, which also takes an
approximation of possible misalignment into account. The human-robot interaction
is simulated in an all-at-once approach that allows to calculate the muscle activity of
the user required in addition to the exoskeleton support to reproduce recorded lift-
ing motions. By minimizing the users’ muscle activity, parameters describing the
characteristics of the passive elements and, in case of DC, motor torque profiles are
optimized. Compared to the initial setup, a significant improvement in exoskeletal
support was achieved across all subjects in both cases while contact forces remained
within prescribed limits to ensure a comfortable usage of the device. DC provides less
support than PO but better control of the human-robot interaction.

Keywords: Optimal Control, Exoskeletons, Parameter Optimization, Multibody Dy-
namics, Biomechanics.

1 INTRODUCTION
Exoskeletons are receiving increasing attention not only in the medical field as a rehabilitation tool
[1][2][3], but also in industry to improve working conditions [4][5][6]. Spinal exoskeletons are
seen as a promising tool to assist workers with lifting tasks and reduce their muscle activity [5] [7],
and thus their risk of low back pain. However, the development of wearable robots is challenging
because the analysis of their effect on the human body as well as the assertion of a comfortable
usage need an extensive testing of the device. This may take a long time and need a high number
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of prototypes. Thus, it is desirable to use optimization techniques to accelerate and facilitate this
process. In [8], a method is presented to optimize the support of a lower body exoskeleton while it
is worn by subjects. This method is difficult to apply to spinal exoskeletons because the subjects
would have to lift objects repeatedly over a long period of time while the robot applies high forces
on them.

In this work, we illustrate an alternative approach by using multibody dynamics and optimal con-
trol to optimize the passive elements of an existing prototype [9] in simulation as well as evaluating
a new design concept (DC) that incorporates motors at the hip joint. Both the human and the ex-
oskeleton are simulated in an all-at-once approach that allows the calculation of forces applied by
the exoskeleton and the muscle activity needed by the user to reproduce a recorded lifting mo-
tion. Previous work applied this method successfully to a simple generic exoskeleton [10][11]. In
[12], preliminary results optimizing the passive elements of the same prototype are presented. In
addition to the new design concept DC, which also includes motors, we extended the method of
[12] by including an estimation of the exoskeleton’s torque generation taking misalignment with
respect to the user into account.

In Sec. 2, a brief overview of the experiments performed for the reference lifting motions and for
the misalignment approximation of the state of the passive elements is given. Then the models
of the user and the exoskeleton applied in the optimal control problem are described in Sec. 3.
The optimal control problem itself is formulated in Sec. 4. The results of the optimization and a
discussion in Sec. 5 and 6 conclude this paper.

2 EXPERIMENTS
Data of two different biomechanical experiments were used in this work. In the following, a short
summary of both is presented.

2.1 Experiments for the Reference Lifting Motions
Lifting motions performed by 5 male subjects (age 21 − 36 years, weight 60 − 82 kg, height 1.70
− 1.82 m) were recorded. For the optimization, we use stoop-lifts of a 10 kg box with handles that
was picked up from a 0.3 m high pedestal placed directly in front of the subjects. Subjects were
instructed on the general form of a stoop-lift but were advised to perform the motion in a way that
is comfortable for them, i.e. bending the knees was allowed.

The kinematics (marker positions) were measured at 44 Hz by an active motion capture system
with two cameras (Certus Northern Digital Inc., Canada). The position of the box was also
recorded using two marker clusters. Ground reaction forces of the subject and of the box were
recorded at 1000 Hz by two force plates (Kistler Instrumente GmbH, Suisse) and the forces be-
tween hands and box handles using uni-directional force sensors. During all trials, the muscle
activity of the subjects was recorded using 12 EMG sensors.

For adjusting the models of the human actuation described in Sec. 3.1.3, it is useful to have an
estimate of the maximum muscle activation observed during the recorded lifting motions. For this
purpose, maximum voluntary contraction trials (MVC) were performed during the experiments
with the aim to measure the EMG signal of the muscles when fully contracted. Two different
MVC trials were used to measure the strength of the lumbar extensors and flexors as well as the
hip extensors:

1. The subject stands on a force plate and performs a maximum effort deadlift against a fixed
barbell.

2. The subject is restrained against an instrumented back rest using heavy Velcro straps and
then having them extend, then flex their torso against the device.

For more information on this experiment, please refer to [11].

https://doi.org/10.3311/ECCOMASMBD2021-235

25



2.2 Experiments for the Alignment between User and Exoskeleton
Three young, healthy subjects (avg. age: 28 years, avg. height: 177 cm, avg. weight: 71.3 kg)
performed a variety of tasks while wearing the prototype. We only consider the lifting tasks con-
sisting of free lift, stoop lift, and squat lift. The tasks were performed with locked and unlocked
misalignment mechanisms (three-revolute-joint-segment, and sliders, please refer to [9]). For our
regression analysis described in Sec. 3.5, we only considered the recordings with unlocked con-
figuration as this represents the standard behavior of the exoskeleton. Active markers were placed
on the subject as well as the exoskeleton. Their positions were recorded using an active motion
capture system with three cameras (Certus Optotrak, Northern Digital, Canada) at a frequency of
50 Hz. The markers for the exoskeleton were attached to the slider connected to the beams, the
part of the pelvis module where the beams are connected to, the passive element at the hip joint
and to the slider of the thigh interface. The state of the exoskeleton was additionally recorded
using its on-board sensors at a frequency of 100 Hz. For further information, please refer to [13].

3 APPLIED MODELS
The recorded lifting motions used in the optimization are fairly symmetrical. This allows us to
reduce the complexity of the system by modeling the human, exoskeleton, and box as symmetric
rigid multibody systems in the sagittal plane (Fig. 1). First, a brief overview of the human model
with muscle torque generators as joint actuators is given. Then the model of the exoskeleton
prototype with its passive elements and the additional actuators for DC as well as the misalignment
approximation is described.
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Figure 1. Modeled human, exoskeleton, and box with their respective degrees of freedom.
The red dots show the locations where the box is connected to the ground and the human to
the ground, the exoskeleton, and the box using contacts and loop closure constraints.

3.1 Modeling the Human with Box
The human model consists of 11 degrees of freedom (DoF) (Fig. 1). Both arms and legs are
lumped together and the trunk is divided into three segments. Every human model was adjusted
to represent the properties of each subject of the used motion capture recordings. The dynamic
properties (segment mass, center of mass and inertia tensors) are estimated via regression equations
proposed by de Leva [14] which are scaled by the height and weight of the person. In addition, the
segment lengths of each subject were determined and the dynamic properties were linearly scaled
accordingly.
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3.1.1 Kinematic Fitting
For the optimization, the recorded motions have to be transferred onto the models to obtain the
respective joint positions. Each model segment was equipped with multiple virtual markers, which
were positioned with the aid of a static trial to match the real markers on the subjects. Because
of the marker placement as clusters, the joint positions q ∈ R11 are obtained by minimizing a
combination of the distance between certain virtual and motion capture markers and the difference
in the orientation of the marker clusters and model segments for each frame separately:

min
q ∑

i∈Np

ai||mV
i (q)−mC

i ||22 + ∑
i∈Nr

bi|| fangle_axis((RV
i (q))

T RC
i )||22 (1)

with mV
i (q) and mC

i ∈ R3 the position of the virtual and motion capture markers. The matrices
RV

i and RC
i ∈ R3×3 describe the orientation of the body segment and of the corresponding marker

cluster in the global frame, respectively. Np and Nr specify the set of marker indices whose position
and whose orientation should be matched. The function fangle_axis(R) calculates the angle-axis
representation of rotation matrix R. Each term is weighted by the factors ai and bi ∈ R. In Tab. 1,
the accuracy of the kinematic fitting in terms of position and angle error is given.

Table 1. Average angle and position error and standard deviation with respect to the sagittal
plane of the recorded and fitted model clusters of the five subjects.

Subject avg. angle error [std] avg. position error [std]
S1 2.20◦ [0.92] 0.62 cm [0.40]
S2 1.89◦ [0.89] 0.28 cm [0.22]
S3 2.82◦ [1.31] 0.74 cm [0.35]
S4 2.73◦ [1.50] 1.00 cm [0.82]
S5 2.67◦ [1.01] 0.66 cm [0.41]

3.1.2 Muscle Torque Generators
The human model is actuated by pairs of agonist and antagonist muscle torque generators (MTG)
[15] with additional joint damping. One MTG summarizes the muscular properties for a joint in
one direction (here: flexion and extension). Instead of having several line type muscles for bending
a segment, only one MTG is needed, which greatly reduces the complexity of the problem without
loosing much accuracy. The torque generated at the human joint i is calculated by:

τHUMAN
i = τFL

i + τEX
i +βiq̇i with βi = ηi

iτFL
0 + iτEX

0
iωFL

max +
iωEX

max
. (2)

The torque generated by the MTG for flexion and extension is denoted by τFL and τEX , respec-
tively. The joint velocities is given by q̇. For each MTG, τ0 is the maximum isometric torque and
ωmax the maximum angular velocity. The damping coefficient β is scaled by factor η .

The amount of torque a muscle can produce depends on the level of activation, the joint position
and the joint velocity. This dependency is modeled in the MTG by three curves: the active ( f A)
and passive ( f P) torque - angle curve representing the active and passive forces generated by the
muscles and the curve f V describing their torque - velocity relationship:

τMT G = τMT G
0 [α f A(θ) f V (ω)+ sP f P(θ −θ P

0 )(1−β P ω
ωMT G

max
)] (3)

with muscle activation α ∈ [0,1] and nonlinear normalized damping term β P. The parameters sP

and θ P
0 scale and shift the passive torque-angle-curve. The MTG-specific angle θ and velocity

ω are derived from the joint angle q and velocity q̇, respectively. It should be noted that only
uniarticular muscles are currently supported by the MTG. Thus, the effect of biarticular muscles
in the movement performance is neglected during simulation. Further information regarding the
MTG can be found in [10] [15].
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3.1.3 Muscle Torque Generator Fitting
The possible strength of a MTG at a given position and velocity can be adjusted by a set of param-
eters. For the optimization, it is vital that the muscle models can generate the torques necessary
to perform the motion. This is not guaranteed when using the default properties derived from
experimental data of the literature as every person differs in strength and flexibility.

A muscle-fitting-routine [15] was applied to adjust the MTG so that they can reproduce the motion
with muscle activation not exceeding a given range [0,αmax]. As the subject likely would not need
their full strength to lift a 10 kg heavy box, an educated guess for the maximum activation level
during the lifting motion would be helpful to get a more accurate representation of the muscle
group properties for each joint. For this purpose, the available EMG data of the recorded lifting
motions were normalized and its peak value was taken as activation limit (αmax) of the MTG
responsible for hip and lumbar extension during the muscle fitting process:

EMGnorm
trial (t) =

EMGtrial(t)−EMGquiet

EMGMAX
MVC−EMGquiet

(4)

with EMGtrial the EMG data of the lifting trial, EMGquiet the mean of the EMG data during quiet
standing phase, and EMGMAX

MVC the peak value observed during a set of MVC trials explained in
Sec. 2. In case no EMG data was available, 0.7 was taken as αmax which is a conservative guess
for athletic subjects lifting a 10 kg heavy box.

3.2 Modeling the Exoskeleton
The exoskeleton model is reduced to the sagittal plane like the human model. It has 9 DoF (6
internal) and consists of several modules: pelvis module, thigh bar, thigh interface, torso bar
(set of beams) and torso interface, which are illustrated in Fig. 1. Between pelvis module and
torso interface and between thigh bar and thigh interface, there are prismatic joints representing
the deflection of the beams and the sliders on the prototype, and there are rotational joints to
align the exoskeleton with the human model at specific contact points. The dynamic parameters
(mass, center of mass, and inertia) were derived from CAD models of the existing prototype. The
total mass of the exoskeleton is 6.7 kg. It generates torques at the lower back by 3 carbon fiber
beams and at the hip joint by passive elements with a nonlinear torque-angle relationship [16].
Mathematical models replicating their behavior are included in the optimization problem and are
described in the next chapters. For DC, a motor is attached to the hip joint to evaluate their effect
on the support and contact forces between user and exoskeleton which affects their alignment. The
weight of the pelvis module is increased by 3 kg to account for the additional actuators.

3.3 Modeling the Passive Hip Element
The passive hip element [16] consists of a linear spring where a cable is attached to. The cable
is guided through a system of rollers and attached to a heart-shaped profile at the center of a
revolute joint. When the joint rotates, the cable is bend over the profile which leads to a nonlinear
torque-angle relationship. The linear spring itself can be pretensioned. The following 6 parameters
specify the shape of the torque profile:
(S) linear spring stiffness, (P) linear spring pretension, (Pmax) maximum pretension of the spring,
(B) length of the lever arm, (C) distance between rollers and cable attachment point at the joint, (R)
radius of the heart - shaped profile. Except for (S) and (Pmax), all parameters are later optimized.
The torque τ generated at deflection angle α is derived as follows:

τ = sign(α)S(−C+B+D+E +PPmax)J, (5)

with
D = Rλ , E =

√
A2−R2, J =Csin(λ −|α|),

A =
√

I2 +H2, I =Ccos(α)−B, H = R−Csin(|α|),
γ = arctan(H

I ), θ = arctan(E
R ), λ = π

2 − γ−θ ,
(6)
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Because of geometrical reasons, following constraint must hold so that the profile is fabricable:

E > 0 (7)

The torque profile is non smooth for α = 0, which is reflected in the absolute function. In order to
obtain a smooth function, the absolute function was approximated with

|α|approx := 2α
(

1
1+ e−100α

)
−α (8)

3.4 Modeling the Carbon Fiber Beam
The beam is modeled as a long thin cantilever beam (Fig. 2) having a uniform circular cross section
made of a linear elastic material which is homogeneous and isotropous. A force F is applied at
its free end in a direction specified by the angle α ∈ R. As the lifting movement is reduced to the
sagittal plane, only sagittal deflections of the beam are considered as well.

v(x)

x

s

FyF

y

x L- x

L

φ(L)

Fx

α

Figure 2. Cantilever beam

Assuming that the Bernoulli–Euler hypothesis is valid and applying the analysis proposed by [17]
on the deflection of a cantilever beam, the Bernoulli–Euler bending moment–curvature relationship
for this type of beam at a point s along the beam with Cartesian coordinates (x,y) (Fig. 2) can be
formulated as follows:

EI
dφ
ds

= M(s), with M(s) = F [sin(α)(δx− x)+ cos(α)(δy− v(x))], (9)

where M and κ = dφ
ds are the bending moment and curvature, respectively. The moment of inertia

of a beam with circular cross section specified by radius r is denoted by I = π
4 r4. The horizontal

and vertical displacement at the end of the beam are given by δx and δy and α is the angle between
the direction of the force and the neutral position of the beam when no forces are applied. Between
the curvature dφ

ds of the deformed beam and the transverse displacement v(x) following relationship
can be established:

dφ
ds

=
d2v
dx2

[
1+
( dv

dx

)2
] 3

2
. (10)

By differentiating eq. 9 with respect to s and taking into account the relations dx
ds = cos(φ) and

dy
ds = sin(φ), we obtain:

EI
d2φ
ds2 +Fsin(α +φ) = 0. (11)
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This equation together with dx
ds = cos(φ) and dy

ds = sin(φ) can be integrated and solved for F and
L when taking the following boundary conditions into account:

v(0) = 0, v(δx) = dy, φ(0) = 0, dφ
ds (L) = 0, (12)

with L the beam length. Note that in our case, the horizontal and vertical displacement of the beam
is known whereas the generated force and the length of the beam are unknown as the connector of
the torso interface can move freely on the slider along the beam.

3.4.1 Polynomial Approximation of the Beam Deflection
The above described method includes solving a boundary value problem which is too complex to
be included in the optimal control setup described in Sec. 4. To avoid the integration of the system,
we approximate the deflection of the beam by a polynomial v(x)≈P(x) =∑N

i=0 aixi of order N ∈N.
The coefficient of the polynomial can be reduced by applying the boundary conditions v(0) = 0
and dv

dx(0) = 0 yielding a0 = a1 = 0. The remaining coefficients and the force F are computed by
minimizing the distance to the deflection δy at the end and the deviation to the deflection-moment
relationship (9) at equally spaced gridpoints 0 = x0 < x1 < · · · < xM = δx, M ∈ N. By setting
M = N the problem reduces to solving following set of equations:

P(δx) = δy (13)

P′′(xk) =
[
1+P′(xk)

2] 3
2 M(xk) (14)

with M(xk) =
F
EI

(sin(α)(δx− xk)+cos(α)(δy−P(xk)), xk =
k
N

δx, k = 0, . . . ,N−1 (15)

Based on the results using different order N (Tab. 2), N = 7 was used in the optimal control
setup and the characteristics of the beam are optimized by adjusting the radius r of the beam cross
section.

Table 2. Deviation (mean [std]) of the force acting at the beam end calculated by the boundary
value problem and the polynomial approximation of different order N setting α = 90◦, δx =

0.4cos(x), δy = 0.4sin(x), x = 0, . . . ,50◦

N 3 4 5 6 7 8
Deviation (N) 2.9 [4.1] 1.1 [2.6] 0.3 [0.7]] 0.1 [0.2] 0.03 [0.05] 0.03 [0.06]

3.5 Coupling of Human and Exoskeleton
In the simulation, a rigid coupling between human and exoskeleton model is assumed, which is
realized over loop closure constraints. This assumption does not fully reflect reality as there is
noticeable movement between user and exoskeleton. However, to model a realistic behavior of the
interaction, adequate experimental data from the prototype is needed which was not available. In
the experiment presented in Sec 2.2, the movement of the arms and head and the position of the
box were not recorded, making the data unsuitable for contact model identification using full-body
simulations.
However, they provide an analysis on how the deflection of the human torso and thigh is different
from the deflection of the exoskeleton’s torso and thigh interface. This data was used to approx-
imate the state of the passive elements with a linear regression model. Parameter values pC

T , pT
T ,

pH
T , pC

H , pT
H and pH

H ∈ R were identified so that the values for the deflection of the torso module
connector (or the beams) θ̂ E

T (≡ atan(lE8/lE7)) and the exoskeleton hip joint angle θ̂ E
H (≡ θE4)

obtained by

θ̂ E
T = pC

T + pT
T θ H

T + pH
T θ H

H (16)

θ̂ E
H = pC

H + pT
Hθ H

T + pH
Hθ H

H (17)
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match the experimental data best in the least-squares sense with θ H
T (≡ θH7 + θH8) the human

torso flexion angle and θ H
H (≡ θH4) the human hip flexion angle (see Fig. 1). In Tab. 3, the

optimized linear regression parameters can be obtained and the results show that a significant
linear regression relationship exists between the human and exoskeleton deflection angles.

Table 3. Linear regression parameters for given angles in radian with an error variance of
0.0044 (R2: 0.9616, p-value: 0.0) for θ̂ E

T and 0.0043 (R2: 0.9829, p-value: 0.0) for θ̂ E
H

pC
T pL

T pH
T pC

H pT
H pH

H
-0.0426 0.4082 -0.3145 -0.0017 -0.2177 0.6912

Furthermore, several studies emphasized as an important requirement for exoskeletons to be com-
fortable to wear over hours even though they are tightly connected to the user with straps and
plates and exert strong pushes and pullings [18] [4]. We address this issue by limiting the interac-
tion forces between user and exoskeleton. These limits are based on [19] where several subjects
were exposed to constant and repeating pressure and they graded in both cases at which level it
was uncomfortable for them and at which level they felt pain. The average values for discomfort
(Tab. 4) are used as limits in the optimization.

Table 4. Contact force limits based on the findings of [19] and a friction coefficient of 0.6

Force Limit Pelvis Contact Thigh Contact Torso Contact
Normal Force 162.40 N 333.40 N 230.30 N
Shear Force 97.44 N 200.04 N 138.18 N

4 OPTIMAL CONTROL PROBLEM FORMULATION
The lifting motion of the human model wearing the exoskeleton is set up as a 3-phase optimal
control problem (OCP). In the first phase, the user stands in an upright position, bends down and
makes contact with the box. In the second phase, the user generates enough force to lift the box.
The last phase starts when the box leaves the ground and ends when the user holds the box in an
upright position. The OCP is formulated as follows:

min
q,q̇,z,α,u,p

Ψ[q, q̇,z,α,u, p] :=
3

∑
i=1

(
Ni

∑
n=0
‖Wq(q(ti,n)−qREF

i,n )‖2 +
∫ ti+1

ti
φ(q, q̇,z,α,u, p)dt

)
(18)

s.t. M(q)q̈+Gi(q)T λ = τ(q, q̇,z,α,u, p)−C(q, q̇) (19)

α̇ = ((um−αm)/Tm)m=1,...,Nm (20)

f (q,z, p) = 0 (21)

gi(q, q̇,z,α,u, p)≥ 0, i = 1, . . . ,3 (22)

with q, q̇, and q̈ the joint positions, velocities, and accelerations, respectively. The number of
shooting nodes of phase i is denoted by Ni. The motion to be tracked is given for time ti,n by the
joint positions qREF

i,n and the fitting accuracy is specified by a weighting matrix Wq. The algebraic
states z and the system of equations (21) define the state of the beam. The parameters p describe
the design of the passive elements of the exoskeleton. The controls u are the neural excitation of
the MTG. In case of DC, the torque profile of the motors is a control as well. Eq.(20) are the MTG
activation dynamics proposed by [20] with activation level α and (de-)activation time constant T .
The number of MTG is given by Nm. The equation of motion of the constrained multibody system
is given by (19) with mass matrix M, constraint jacobian Gi, and unknown force variables λ . The
function C contains the centrifugal, gravitational and Coriolis forces. The generalized forces are
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denoted by τ consisting of the joint torques and forces generated by the MTG and the exoskeleton.
The Constraints (22) include, among others, position constraints, constraints on hand-to-box, box-
to-floor, and foot-to-floor contact forces, human/exoskeleton alignment regulations and limits on
parameters, states and controls. The objective function (18) consists of a least squares term for
tracking the recorded motion and a Lagrange term enforcing the reduction of human joint moments
and pelvis contact moment. The OCP is discretized using direct multiple shooting and the resulting
NLP is solved with SQP and active-set method provided by the toolbox MUSCOD-II [21]. For the
rigid multibody dynamics calculations, the open-source library RBDL [22] was used.

5 RESULTS
The support of the exoskeleton was optimized for several recorded lifting motions. For the proto-
type optimization (PO), parameters describing the the behavior of the beam (beam cross section
radius) and the passive elements (see Sec. 3.3) were optimized. For the new design concept (DC),
motor torque profiles were optimized as well. The results are compared to the original configura-
tion (O) of the prototype. The weighting of the cost function enforced a high fitting accuracy (avg.
joint angle error across all subjects 0.17◦− 0.62◦) with the same values for all simulation setups
(O/PO/DC). This guarantees that the reduction in muscle activity comes solely from the support
provided by the exoskeleton and not from an alteration of the motion.

In Tab. 5, the achieved support for each subject with respect to each setup is listed. Both optimized
configurations, PO and DC, provide higher support than O across all subjects. However, PO
increases the support by additional 2.5 - 4.1 % regarding the lumbar moment, 1.6 - 2.7 % regarding
the hip moment, and 1.9 - 3.7 % regarding the peak lumbar moment compared to DC. The higher
support of PO is based on torque profiles of the beams and PH with higher peaks than of DC during
the motion (Fig. 3). Through the motors, a broader torque curve is achieved resulting in smaller
loss of support at the hip joint than at the lumbar joint compared to PO. The fact that the limit on
the normal contact force at the pelvis is reached for both PO and DC (Fig. 4) suggests that due to
the higher weight of the pelvic module, a force/torque generation of the exoskeleton of DC at the
same level as PO was not possible before the limit was reached.

The higher weight is also reflected in the shear forces acting at the pelvis contact point (Fig. 4), in
particular at the beginning and end of the motion when the user is standing upright and the weight
of the exoskeleton mainly contributes to them. The normal and shear forces of the thigh (max. 127
N and 7 N across subjects and PO/DC) and torso (max. 121 N and 16 N) contact point stayed far
below the set limits. As intended, adding the motor to the prototype resulted in a high reduction of
the moment acting at the pelvis contact compared to PO (Fig. 4), staying within [-4.9 Nm, 3.6 Nm]
in contrast to [-11.4 Nm, 5.4 Nm] and yielding a very good alignment of exoskeleton and user. For
comparison the contact moment of O lies in the range of [-8.1 Nm, 7.4 Nm] for all subjects.

Table 5. Reduction of hip and lumbar moment when using the exoskeleton of DC | PO | O
with respect to the corresponding human-only-simulation

Subject lumbar moment reduction* hip moment reduction* peak lumbar moment reduc.

S1 15.5% | 18.7% | 14.1% 12.1% | 14.3% | 11.2% 19.9% | 23.5% | 17.5%
S2 13.5% | 16.5% | 11.9% 12.4% | 14.1% | 10.1% 13.4% | 16.8% | 12.0%
S3 12.0% | 15.4% | 10.7% 7.7% | 9.6% | 6.5% 12.0% | 15.5% | 10.6%
S4 14.3% | 16.8% | 9.5% 10.0% | 11.6% | 4.9% 12.2% | 14.1% | 7.6%
S5 18.6% | 22.7% | 17.3% 12.2% | 14.9% | 11.3% 16.3% | 20.0% | 14.9%

∗ reduction in terms of the integrated area under the moment curve
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Figure 3. From left to right: The torques generated at the bottom of the beams (at lumbar
joint level) during the motion of PO and of DC. The torques generated by PH during the
motion using the exoskeleton configuration of PO and of DC. Please refer to Fig. 4 for the
color legend regarding the subjects.

6 DISCUSSION AND CONCLUSIONS
In this work, we present a method to optimize and evaluate design concepts for exoskeletons in
terms of contact forces between user and exoskeleton and load reduction using an optimal control
formulation. It can be used to optimize the design of passive elements described by multiple
parameters and motor torque profiles that serve as guidelines for the next prototype. The modular
setup offers an easy switching between exoskeleton models. It can also be extended to perform
optimization without reference data if the tracking term is left out, which was shown in [10].
Note that these calculations can also be done without having a real prototype and do not need
biomechanical experiments involving long usages of the device as in [8].

It also provides an analysis of the actuation patterns of the user, which were not presented here
but need to be considered during the optimization. Lifting motions involve going to the limits
of the range of motion when also passive muscle forces are present. Thus, it is important to
have an estimation of the distribution of active and passive muscle forces during simulation as the
exoskeleton should only take over the active muscle part. Otherwise, the user may have to work
against the exoskeleton while performing the same motion.

We analyzed the effect of including additional motors at the hip joint of an existing prototype hav-
ing only passive elements and showed that this would lead to a decrease in the possible support
while the contact moment acting at the pelvis can be much better controlled. One limitation is the
assumption of rigid coupling between the user and the exoskeleton. In reality, movements occur
with respect to each other. In context of the prototype evaluated, a movement or rotation of the
exoskeleton segments with respect to the user may lead to a higher deflection of the beam resulting
in a different, possible higher, support. We included an estimate of the effect the movement of the
exoskeleton has on the passive elements using linear regression equations obtained by experimen-
tal data. A comparison to preliminary results presented in [12], showed that the simulated support
in this work agrees better with the values observed in [5]. However, the regression equations only
depend on the user’s position and not on the generated torque distribution of the exoskeleton. In
order to accurately model the human-robot interaction, additional experimental data is needed,
which was not available for these calculations and is part of future work.
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Figure 4. The calculated contact forces and moment acting at the pelvis contact point using
the exoskeleton configuration of PO (first row) and of DC (second row). The dashed lines
indicate the prescribed limits on the forces during the optimization.
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ABSTRACT

The tippedisk is a new mechanical-mathematical archetype for friction induced insta-
bility phenomena, showing an inversion similar to the inversion of the tippetop. Un-
like the tippetop, the tippedisk has no rotational symmetry, which greatly complicates
its analysis. Since the system cannot be reduced to a planar one, one has to consider
the full three-dimensional kinematics, being intrinsically nonlinear. In this work a
new minimal model is derived that contains the main relevant physical effects so that
the inversion phenomenon can be described qualitatively. The in-depth analysis leads
to slow-fast systems with homoclinic connections and global bifurcations.

Keywords: gyroscopic system, friction-induced instability, dynamics, tippetop.

1 INTRODUCTION
Various gyroscopic systems which are interacting with a horizontal frictional support, such as the
Euler disk [1, 2], the rattleback [3, 4] and the tippetop [5, 6, 7, 8], form a scientific playground for
research in theoretical mechanics. The tippetop [5, 6], as well as the related dynamics of spinning
eggs [9, 10], correspond to a subclass of gyroscopic systems which show inversion phenomena.
The tippetop is a rotationally symmetric top, consisting of a spherical body and a stem attached to
it. The center of gravity (COG) does not coincide with the geometric center, such that the stem
remains pointing upwards as the top rotates slowly in its non-inverted orientation. If the top is
spun fastly around its axis of symmetry, gravitational, normal and friction forces are acting on the
top, such that the top starts to invert its orientation and balances on its stem. This phenomenon
of inversion also occurs for other axisymmetric bodies with rotational symmetry in inertia and
geometry, for example spinning eggs [9, 10, 11]. But what happens if this symmetry does not
exist? In [12], we introduced the "tippedisk" as new archetype of a three-dimensional rigid body
system with frictional contact. The tippedisk can be seen as a thin disk for which the COG does
not coincide with the geometric center. If the tippedisk is spun rapidly around an in-plane axis,
one can observe that the COG rises until the disk remains in an inverted configuration, see Fig. 1.
The inversion phenomenon is therefore not restricted to axisymmetric rigid bodies and also takes
place for the tippedisk. In this work, we derive a minimal model able to describe the inversion
of the tippedisk. A suitable parametrization is introduced, which is able to describe the inversion
phenomenon. The model developed in this work forms the basis for in-depth nonlinear analysis of
the dynamics of the tippedisk, e.g., [13, 14].

2 MECHANICAL MODEL
The mechanical system depicted in Fig. 2 consists of an unbalanced rigid disk with mass m, radius
r, eccentricity e, thickness h and a flat frictional support. Since we are only interested in the essen-
tial physical phenomena, the contact kinematics is simplified by assuming the disk to be infinitely
thin. According to this approximation, the contact point C1, i.e., the point with minimal height, lies
on a circle around the geometric center G, in the inclined Π-plane. The vertical projection of the
contact point C1 onto the horizontal support is denoted by D1. Both the disk and the flat support are
considered to be perfectly rigid, so that penetration is not possible. We introduce an orthonormal
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Figure 1: Stroboscopic image sequence showing the inversion phenomenon of the tippedisk. First
Picture: Non-inverted configuration; Last Picture: Tippedisk spinning in its inverted configuration.

Figure 2: Mechanical model of the tippedisk, showing the definition of the floating G-frame and
the contact points C1 and D1.

inertial frame I = (O,eI
x,eI

y,eI
z) attached to the origin O, where eI

z is normal to the flat support. The
right-handed body-fixed B-frame B = (G,eB

x ,eB
y ,eB

z ) is attached to the geometric center G of the
disk, such that eB

z is normal to the surface of the disk. The axis eB
x is defined as the normalized

vector of rGS, which points from the geometric center G to the center of gravity S. The inertia
tensor with respect to G expressed in the body-fixed B-frame is given as BΘΘΘG = diag(A,B,C),
where B < A <C holds. To describe the kinematics of the point C1, we introduce analogue to [15]
a floating coordinate system G = (G,eG

x ,eG
y ,eG

z ), which is attached to the geometric center G. Its
unit vector eG

z corresponds to eB
z . Since the cross product eI

z× eB
z is perpendicular to eI

z and eB
z , we

define the orthogonal vector

eG
x :=

eI
z× eB

z

||eI
z× eB

z ||
with ‖eI

z× eB
z ‖=

√
1−R2

33, (1)

as the horizontal unit vector of the floating coordinate system, where R33 denoted the third diag-
onal element of the rotation matrix R given below. The symbol ||.|| denotes the Euclidean norm.
Definition (1) is only valid for non-horizontal configurations with R33 6= 1. For horizontal config-
urations, note that eG

x can not be determined uniquely. If R33 6= 1, we can obtain with

eG
y := eB

z × eG
x (2)

a right handed orthonormal frame, such that the floating coordinate frame G = (G,eG
x ,e

g
y ,eG

z ) is
fully defined. The point C1 with minimal height can be described with respect to the geometric

https://doi.org/10.3311/ECCOMASMBD2021-113

38



Figure 3: Dimensions of the tippedisk.

center G as
rGC1 =−r eG

y . (3)

The distance between the contact point C1 and the flat support defines the signed gap gN

gN = rOC1 · eI
z = (rOG + rGC1) · eI

z, (4)

which is equal to the projection of rOC1 onto the eI
z-axis.

3 DIMENSIONS
In the following we consider a stainless steel disk, which is depicted in Fig. 3. The dimensions and
mass properties are given in Table 1, for a detailed derivation of the principal moments of inertia,
we refer to [12].

Table 1: Dimensions and mass properties of the tippedisk.

Property Parameter Magnitude Unit

Disk radius r 0.045 m

Hole radius a 0.015 m

Distance b 0.02 m

Disk thickness h 0.01 m

Eccentricity e 2.5 ·10−3 m

Mass m 0.435 kg

BΘΘΘG(1,1) A 0.249 ·10−3 kg m2

BΘΘΘG(2,2) B 0.227 ·10−3 kg m2

BΘΘΘG(3,3) C 0.468 ·10−3 kg m2

4 KINEMATICS
We parametrize the orientation of the tippedisk using Euler angles ϕϕϕ = [α, β , γ]T. Therefore,
the rotating R-frame with eR

z = eI
z, eR

x = cosα eI
x + sinα eI

y and eR
y = eR

z × eR
x is introduced. The

sequence of rotation is then given as the first rotation with angle α around the eI
z-axis, the second

rotation with angle β around the eR
x -axis and the third rotation with angle γ around the eG

z -axis
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with corresponding elemental rotations

AIR =




cα −sα 0
sα cα 0
0 0 1


 , ARG =




1 0 0
0 cβ −sβ
0 sβ cβ


 and AGB =




cγ −sγ 0
sγ cγ 0
0 0 1


 , (5)

where the abbreviations sα = sin(α), cα = cos(α) etc. have been used. The rotation matrix

R(ϕϕϕ) =




cαcγ− sαcβ sγ −cαsγ− sαcβcγ sαsβ
sαcγ + cαcβ sγ −sαsγ + cαcβcγ −cαsβ

sβ sγ sβcγ cβ


 , (6)

which per se fulfills the orthogonality condition RTR = I, then describes the relative orientation
of the body-fixed B-frame with respect to the inertial I-frame.1 The angular velocity ΩΩΩ of the
tippedisk expressed in the body-fixed B-frame yields

BΩΩΩ = α̇ AT
RB ReR

z + β̇ AT
GB GeG

x + γ̇ BeB
z =




α̇sβ sγ + β̇cγ
α̇sβcγ− β̇ sγ

α̇cβ + γ̇


 , (7)

where the transformation matrix ARB = ARGAGB has been used. The transformation

RΩΩΩ = ARB BΩΩΩ =




β̇
−γ̇sβ

α̇ + γ̇cβ


 (8)

yields the angular velocity of the tippedisk expressed in the rotating R-frame. The relative angular
velocity of the R-frame is given with respect to the I-frame as Rωωω IR = [0, 0, α̇]T. Using coordinates
x, y and z, the position of the geometric center G in the rotating R-frame is defined as

RrOG :=




x
y
z


 . (9)

The corresponding velocity

RvG =




ẋ
ẏ
ż


+




0
0
α̇


×




x
y
z


=




ẋ− yα̇
ẏ+ xα̇

ż


 (10)

is obtained, using Euler’s rule of differentiation RvG = (RrOG)̇+ Rωωω IR× RrOG. Introducing the set
of coordinates q = [x, y, z, α, β , γ]T ∈ R6, the Jacobian matrices of rotation JR and translation JG

are obtained with (7) and (10) as

BJR =
∂BΩΩΩ
∂ q̇

=




0 0 0 sβ sγ cγ 0
0 0 0 sβcγ −sγ 0
0 0 0 cβ 0 1


 , RJG =

∂RvG

∂ q̇
=




1 0 0 −y 0 0
0 1 0 +x 0 0
0 0 1 0 0 0


 . (11)

The relative position of the center of gravity S with respect to the geometric center G is given as
rGS = eeB

x , using the eccentric distance e. For reasons of notation, the bijective map

j : R3→ R3×3 : a =




a1
a2
a3


 7→ ã =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 , (12)

is introduced, such that the cross product a×b can be written as matrix product of ãb.
1The rotation matrix R becomes singular for β = 0 and β = π . However, the following simulation results show that

the inversion of the tippedisk is far from singularity, which proves the validity of this parameterization.
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5 KINETICS
The virtual work [16, 12] of a single rigid body is given coordinate free as

δW =

[
δrG

δϕϕϕ

]
·
([

m1 mr̃T
GS

m r̃GS ΘΘΘG

][
aG

ΨΨΨ

]
−
[
−mΩΩΩ× (ΩΩΩ× rGS)
−ΩΩΩ× (ΘΘΘG ΩΩΩ)

]
−
[

Fext
G

Mext
G

])
. (13)

According to Eq. (9) the geometric center G is parameterized with respect to the rotating R-frame2.
Since the inertia tensor in the body-fixed B-frame BΘΘΘG is constant, it is convenient to express the
angular velocity ΩΩΩ and the angular acceleration ΨΨΨ with respect to the body-fixed B-frame, so that
the virtual work Eq. (13) expressed in mixed R- and B-coordinates reads as

δW =

[
RδrG

Bδϕϕϕ

]T([ mI mRr̃T
GSARB

m Br̃GSAT
RB BΘΘΘG

][
RaG

BΨΨΨ

]
−
[
−m RΩΩΩ× (RΩΩΩ× RrGS)
−BΩΩΩ× (BΘΘΘG BΩΩΩ)

])
−δW ext, (14)

where

δW ext = δqTfext =

[
RδrG

Bδϕϕϕ

]T[
RFext

G

BMext
G

]
(15)

denotes the virtual work of external forces an torques caused by force elements or contact forces.
The introduced kinematics from Eq. (9), induces the variation of the geometric center as

RδrG = RJGδq. (16)

Together with the δq-induced variation of the orientation

Bδϕϕϕ = BJRδq, (17)

the virtual work (induced by the variation of coordinates δq) yields

δW = δqT
[

RJG

BJR

]T

·
([

mI mRr̃T
GSARB

m Br̃GSAT
RB BΘΘΘG

][
RaG

BΨΨΨ

]
−
[
−m RΩΩΩ× (RΩΩΩ× RrGS)
−BΩΩΩ× (BΘΘΘG BΩΩΩ)

])
−δW ext,

(18)
from which the equation of motion can be extracted as

[
RJG

BJR

]T

·
([

mI mRr̃T
GSARB

m Br̃GSAT
RB BΘΘΘG

][
RaG

BΨΨΨ

]
−
[
−m RΩΩΩ× (RΩΩΩ× RrGS)
−BΩΩΩ× (BΘΘΘG BΩΩΩ)

])
= fext. (19)

Inserting the introduced kinematics in Eq. (19) yields an equation of the form

M(q)q̈−h(q, q̇) = fext (20)

with symmetric mass matrix

M(q) =
[

M11 M12
sym. M22

]
, (21)

M11 =




m 0 0
0 m 0
0 0 m


 , (22)

M22 =




M22,11 · sym.
M22,12 Ac2γ +Bs2γ ·
M22,13 0 C


 , (23)

M12 =



−my−mecβ sγ 0 −mesγ

mx+mecγ −mesβ sγ mecβcγ
0 mecβ sγ mesβcγ


 , (24)

2In [12] there is a typo in Eq. (2.36), since with IaP the acceleration of the geometric center must correspond to IaG.

https://doi.org/10.3311/ECCOMASMBD2021-113

41



M22,11 = m(x2 + y2)+2me(xcγ + ycβ sγ)+(As2γ +Bc2γ)s2β +Cc2β , (25)

M22,12 = (A−B)sβ sγcγ−mexsβ sγ, (26)

M22,13 = mexcβcγ +meysγ +Ccβ , (27)

and vector of gyroscopic forces

h(q, q̇) :=
[
h1 h2 h3 h4 h5 h6

]T
, (28)

h1 =m
[
xα̇2 +2ẏα̇

]
+me

[
(α̇2 + γ̇2)cγ−2α̇β̇ sβ sγ +2α̇ γ̇cβcγ

]
, (29)

h2 =m
[
yα̇2−2ẋα̇

]
+me

[
(α̇2 + β̇ 2 + γ̇2)cβ sγ +2α̇ γ̇sγ +2β̇ γ̇sβcγ

]
, (30)

h3 =me
[
β̇ 2sβ sγ + γ̇2sβ sγ−2β̇ γ̇cβcγ

]
, (31)

h4 =−2m
[
xẋα̇ + yẏα̇

]

−me
[
2ẋα̇cγ +(2ẏα̇− xβ̇ 2− xγ̇2)cβ sγ

−2xα̇ γ̇sγ−2xβ̇ γ̇sβcγ + yγ̇2cγ−2yα̇β̇ sβ sγ +2yα̇ γ̇cβcγ
]

− (A−B)
[
β̇ 2cβ sγcγ +2α̇ γ̇s2β sγcγ + β̇ γ̇sβ (c2γ− s2γ)

]

−2(As2γ +Bc2γ−C)α̇β̇ sβcβ +Cβ̇ γ̇sβ , (32)

h5 =me
[
2ẋα̇− yα̇2]sβ sγ +(A−B)

[
2β̇ γ̇sγcγ− α̇ γ̇sβ (c2γ− s2γ)

]

+(As2γ +Bc2γ)α̇2sβcβ −C
[
α̇2sβcβ + α̇ γ̇sβ

]
, (33)

h6 =−me
[
2ẏα̇ + xα̇2]sγ−me

[
2ẋα̇− yα̇2]cβcγ

+(A−B)
[
(α̇2s2β − β̇ 2)sγcγ + α̇β̇ (c2γ− s2γ)sβ

]
+Cα̇β̇ sβ . (34)

For a shorter notation, the abbreviations cγ = cosγ and c2γ = cos2 γ are used. As the points C1 and
S are not directly paramerterized, the rigid body formula RvP = RvG +RΩΩΩ×RrGP is used to obtain
the Jacobian RJP = RJG− Rr̃GP RJR of an arbitrary body point P, where Jacobian RJR = ARB BJR
holds. The right hand side of Eq. (20) contains the generalized gravitational force

fG =−mg RJS
T

ReI
z =−mg(RJG− Rr̃GS RJR)

T
ReR

z

=−mg
[
0 0 1 0 ecβ sγ esβcγ

]T
, (35)

the normal and tangential generalized contact forces wNλN and WT λλλ T with generalized force
directions

wN = RJC1
T

ReR
z = (RJG− Rr̃GC1 RJR)

T
ReR

z

=
[
0 0 1 0 −rcβ 0

]T
, (36)

WT = RJC1
T
[

ReR
x ReR

y
]
= (RJG− Rr̃GC1 RJR)

T
[

ReR
x ReR

y
]

=

[
1 0 0 rcβ − y 0 r
0 1 0 x −rsβ 0

]T

(37)

and writes as fext = fG+wNλN +WT λλλ T . The contact point C1 does not detach during the inversion
of the tippedisk, see [12]. This motivates the bilateral constraint gN = 0, which forces the gap from
Eq. (4) to zero. The application of the bilateral constraint on position level leads to a system of
differential algebraic equations (DAE) with index three. This index can be reduced by formulating
the bilateral constraint on acceleration level

for t = 0 gN(0) = ġN(0) = 0, for t ≥ 0 g̈N = wT
N q̈+ ẇT

N q̇ = 0. (38)

In this case the scalar normal force λN takes the role of a Lagrange multiplier, which forces the
constraint to be fulfilled. In [12] it is shown that smooth Coulomb friction

λλλ T = µλN
γγγT

||γγγT ||+ ε
, (39)
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with the friction coefficient µ and the smoothing parameter ε is sufficient to describe the inversion
phenomenon qualitatively. The kinematic quantity γγγT describes the relative slip velocity between
the associated contact points C1 and D1 with respect to the rotating R-frame and is defined as

γγγT :=
[

γT x

γTy

]
=

[
ReR

x · (RJC1 q̇)
ReR

y · (RJC1 q̇)

]
. (40)

Moreover, we mention that the friction force λλλ T here depends linearly on the normal contact
force λN and therefore directly on the Lagrange multiplier λN of the bilateral constraint. The
smoothing is hereby motivated, as set-valued Coulomb-Contensou friction couples drilling and
tangential friction [17]. If the macroscopic contact point experiences a spinning velocity, then
from a microscopic point of view the associated contact area is forced to be in slip state. As the
tippedisk is always spinning during inversion, the contact point C1 slips permanently, such that
smooth Coulomb friction is justified.

6 SIMULATION
Introducing the trivial kinematic relation q̇ = u, which is combined with the equation of motion
from Eq. (20) and the bilateral constraint on acceleration level g̈N(t) = 0, considering smooth
coulomb friction, the system




I 0 0
0 M −WNT

0 wT
N 0




︸ ︷︷ ︸
A




q̇
u̇

λN


=




u
h+ fG

−ẇT
N q̇


 , (41)

with WNT := wN − µWT
γγγT

||γγγT ||+ε is obtained. Equation (41) corresponds to an linear equation
system (with invertible A-matrix) such that it is possible to derive a first order ordinary differential
equation (ODE) in generalized coordinates q and velocities u. This ODE can be solved with any
standard integrator, e.g., a four staged Runge-Kutta method. At this point we restrict us to the
integrator ode15s from MATLAB. For a more detailed derivation, we refer to [12].

6.1 Initial conditions and model parameters
In this section, the results of numerical simulations using the derived minimal model are discussed.
As shown in Figure 4, the tippedisk is called not inverted when β = π

2 and γ =−π
2 holds. In this

configuration the center of gravity S lies below the geometric center G. Vice versa, we call the
disk inverted if β = π

2 and γ = π
2 , i.e., the center of gravity S lies above the geometric center

G. Due to the periodicity of the trigonometric functions sine and cosine these definitions are not
unique, since for β = −π

2 and γ = π
2 the tippedisk is also in a inverted configuration. However,

the following numerical results show that β is in the range of (0,π) during the inversion, so this
ambiguity does not matter.

Figure 4: Non-inverted and inverted configuration of the tippedisk.
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The initial conditions, at time t0 = 0s, are given in Table 2. The end time of the simulation is set to
t1 = 5s. According to Table 2, the disk rotates initially with closed contact point in non-inverted
orientation without slippage, i.e., ||γγγT ||= 0. For the following simulations, the friction coefficient
µ = 0.3 and smoothing parameter ε = 0.1 m

s are chosen.

Table 2: Initial condition: Perturbed non-inverted spinning with closed contact.

Coordinate Magnitude Unit Velocity Magnitude Unit

x0 0 m ẋ0 0 m/s

y0 0 m ẏ0 0 m/s

z0 0.045 m ż0 0 m/s

α0 0 rad α̇0 40 rad/s

β0 0.5π rad β̇0 0 rad/s

γ0 −0.5π +0.1 rad γ̇0 −α̇0 cos(β0) = 0 rad/s

6.2 Simulation results
The numerical results of the system from Eq. (41), assuming smooth Coulomb friction Eq. (39)
and initial conditions from Table 2 are shown in color in Figure 5. For comparison, the results
of the quaternion-based model from [12], which assumes unilateral contact and smooth Coulomb
friction, are shown in black (dotted/dashed). At t = 0s, the tippedisk is almost in the non-inverted
configuration, as β =+π

2 and γ =−π
2 +0.1 holds. Starting from this, the angle γ increases quickly

from −π
2 and ends in an asymptotic oscillation around +π

2 . During this first stage of motion the
inclination angle β does only change slightly, such that the inversion of the tippedisk can be
directly related to the change of the angle γ . Both angles β and γ are increasingly superimposed
by small oscillations with higher frequency. In the zS-graph, the height of the center of gravity S
is shown, growing from r− e to r + e, which also indicates that the disk ends up in an inverted
configuration with closed contact. During this inversion process, the kinetic energy Ekin decreases
while the potential energy Epot increases, such that the total energy Etot dissipates from 0.38Nm to
0.36Nm for t < 0.5s. After this initial fast decay, the total energy slowly decreases as the tippedisk
rotates near the inverted stationary solution. In the considered time interval, the rotation angle α
increases almost linearly. The associated spinning velocity α̇ initially increases as the height zS of
the center of gravity drops, followed by a saturating decrease on an ‘intermediate’ timescale. The
long-term behavior is characterized by a slow decrease of the spinning velocity α̇ .
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Figure 5: Simulation results showing the inversion of the tippedisk. The corresponding initial
conditions are given in Table 2.

7 DISCUSSION
The simulation results from Fig. 5 show that the derived model with smooth Coulomb friction
and a bilateral constrained contact point is able to describe the inversion behavior of the tippedisk.
Comparison with the quaternion-based time stepping model proves that both models lead to the
same results (with respect to numerical error), which shows the correctness of the new minimal
model for the inversion phenomenon. As the Change of the spinning velocity α̇ is relatively small,
the associated rotation angle α depends almost linearly on time t, i.e., α is approximately given
as α(t)≈ Ω t with constant spinning velocity Ω. At this point, the derivation of the new minimal
model seems artificial, since other models from [12] already describe the inversion phenomenon
of the tippedisk correctly and even lead to the exactly same results, cf. Fig. 5. However, to
characterize the stability of the inverted and non-inverted stationary solutions, it is convenient
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to linearize the equations of motion around β = +π
2 and γ = ±π

2 . A given parametrization of
the geometric center G (or center of gravity S) with respect to the inertial frame I yields system
equations that depend explicitly on the angle α , see [12]. As α(t) is a function in time t, the
linearized system matrices are time dependent, therefore Lypunov’s indirect method can not be
applied and Floquet theory must be used, which greatly complicates the closed form analysis. In
this work, we have introduced a new parametrization of the geometric center G with respect to the
rotating R-frame, which led to system equations that do not explicitly depend on α and thus do not
depend on time t. This has the advantage that the linearized system matrices are constant and thus
Lyapunov’s indirect method can be applied to study the local stability behavior.

8 CONCLUSIONS
The tippedisk introduced in [12] serves as a link between analytical mechanics, theoretical me-
chanics and nonlinear dynamics. Our aim is to understand the nonlinear behavior behind the
inversion phenomenon of the tippedisk. Therefore, a mathematical description is sought that will
form the basis for future stability analyses of the nonlinear system. Depending on the parametriza-
tion, the system equations vary in their suitability for dynamic analysis. In this work, we have
introduced a new minimal model of the tippedisk, which qualitatively describes the inversion phe-
nomenon and has some advantages for future dynamical considerations, such as constant system
matrices for the linearization around the inverted and non-inverted configurations. Based on the
parametrization presented here, [13] applies Lyapunov’s indirect method to obtain a closed-form
expression for the critical spinning velocity Ωcrit above which the inverted spinning solution be-
comes stable. Moreover, the linear stability analysis indicates different timescales, suggesting
slow-fast dynamical behavior. By analyzing this singularly perturbed structure, the complexity
and order of the model can be reduced to obtain a lower dimensional dynamical system that de-
scribes the inversion phenomenon of the tippedisk, cf. [13, 14].
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ABSTRACT
One of the main difficulties in the state observer design for impulsive mechanical sys-
tems is the so-called peaking phenomenon: even for an arbitrarily small pre-impact
estimation error, a slight mismatch between the impact time instants of the observer
and the observed system can lead to large post-impact estimation error. Therefore,
Lyapunov’s stability theorems cannot be directly applied. For linear mechanical sys-
tems with unilateral constraints, we propose to take a Nonsmooth Dynamics perspec-
tive on the problem, which allows to sidestep the main difficulties by transforming
and approximating the original continuous-time system by a discrete linear comple-
mentarity system through the use of the Schatzman-Paoli scheme. The discretization
acts as a regularization, i.e. the impacts take place over two consecutive time steps.
Furthermore, it involves force and impact laws on position-level with the favorable
property of maximal monotonicity. Finally, a passivity-based observer design for dis-
crete linear complementarity systems can be applied.

Keywords: Nonsmooth systems, linear complementarity systems, impacts, unilateral
constraints, peaking phenomenon.

1 INTRODUCTION
An important aspect of the state observer design for impulsive mechanical systems is whether or
not the impact time instants, where state jumps occur, are known. Most proposed observers as-
sume that these impact time instants can directly be extracted from measurements, for example by
measuring all relevant positions in a system where the impact time instants are position dependent
[1, 2] or by directly measuring contact [3]. This allows for the design of a state observer that
exhibits impacts (or state jumps) that occur at the same time instants as in the observed system.
Under a maximal monotone impact law, it is then possible to construct a Lyapunov function which
does not increase over impacts, and with which asymptotic stability of the error dynamics (i.e. the
time evolution of the difference between the estimated state and the actual state) can be shown.
Only few attempts have been made to design state observers in the case of unknown impact time
instants, such that the corresponding state jumps of the observed system and the state observer
do not coincide. One of the main difficulties in that case is the peaking phenomenon: even for
an arbitrarily small pre-impact estimation error, a slight mismatch in the impact time instants can
lead to a large post-impact velocity error caused by velocity jumps. This makes it difficult to show
asymptotic stability of the estimation error dynamics using Lyapunov’s stability theory. In fact,
due to the peaking phenomenon, the estimation error dynamics is not Lyapunov stable by defini-
tion. One approach for such systems is to find a state transformation from the original system into
a new system without state jumps [4, 5], for which conventional state observer techniques can be
applied. However, such a transformation does not always exist and is in general difficult to find.
In this paper, we aim at sidestepping the main difficulties in the observer design for impulsive
mechanical systems by first discretizing the continuous-time problem using the Schatzman-Paoli
scheme, in which force and impact laws are formulated on position level with the favorable prop-
erty of maximal monotonicity.
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2 CONTINUOUS-TIME PROBLEM
We consider a linear mechanical system which is subjected to unilateral constraints and a time-
dependent external forcing. Let q(t) be the generalized coordinates and u(t) be the corresponding
generalized velocities. In general, u(t) is assumed to be a function of bounded variation, leading
to absolutely continuous q(t). The non-impulsive part of the dynamics is described by

q̇ = u,
Mu̇+Kq+Du = Wλλλ + f(t),

(1)

where the the mass matrix M = MT ≻ 0, the stiffness matrix K = KT ≻ 0 and the damping matrix
D ≻ 0 are assumed to be constant and positive definite. The unilateral constraints are described
by linear inequality conditions g(q) = WTq ≥ 0, leading to the non-impulsive constraint forces λλλ .

The generalized force directions, given by the columns of W =
(

∂g
∂q

)T
, are assumed to be constant

and linearly independent (such that W has full rank). Furthermore, the system is excited by a
bounded, time-dependent external forcing f(t). Note that the equations of motion (1) by themselves
do not allow for discontinuities in the generalized velocities u. In order to describe velocity jumps
due to impacts, the impulsive part of the dynamics, i.e. the impact equations, are given by

M(u+−u−) = WΛΛΛ, (2)

where u+(t) and u−(t) denote the left and right limit of u at time t and ΛΛΛ are the impulsive
constraint forces. For the components of the constraint forces λλλ and ΛΛΛ we assume Signorini’s law
on position level

0 ≤ g ⊥ λλλ ≥ 0, (3a)

0 ≤ g ⊥ ΛΛΛ ≥ 0, (3b)

where we used the notation g ≥ 0 to express the non-negativity of every component gi ≥ 0 ∀ i and
the notation g ⊥ λλλ to express the orthogonality gTλλλ = 0. Hence, (3a) is equivalent to gi ≥ 0,λi ≥
0,giλi = 0 for all i and is referred to as an inequality complementarity condition. The constraint
forces can alternatively be formulated on position-switched velocity level [6]: with γγγ = WTu, the
laws (3) are equivalent to the component-wise law

gi(q) = 0 : 0 ≤ γi ⊥ λi ≥ 0 , gi(q)> 0 : λi = 0,

gi(q) = 0 : 0 ≤ γi ⊥ Λi ≥ 0 , gi(q)> 0 : Λi = 0.
(4)

In addition to the force laws (4), an impact law has to be specified for a full description of the
dynamics. Instantaneous impact laws directly relate post-impact relative velocities to pre-impact
relative velocities and, in consistency with (4), are formulated on velocity level. Here, we will
make use of a generalized Newtonian impact law [7], which is written component-wise as

gi(q) = 0 : 0 ≤ ξi ⊥ Λi ≥ 0 , gi(q)> 0 : Λi = 0, (5)

with the kinematic variables ξi := γ+i + εiγ−i and given coefficients of restitution εi ∈ [0,1].

In view of the time discretization, it is convenient to merge (1) and (2) in a compact formula-
tion containing both the non-impulsive and the impulsive dynamics. This leads to an equality of
measures of the form [8, 9]

dq = udt,

Mdu+(Kq+Du− f(t))dt = WdP,
(6)

where dq is the so-called differential measure of the generalized coordinates q. Similarly, du =
u̇dt +(u+−u−)dη is the differential measure of the generalized velocities, allowing for discon-
tinuities in the generalized velocities u. Herein, dη is an atomic measure, being the sum of Dirac
point measures [8]. Furthermore, dP = λλλdt +ΛΛΛdη is the differential contact effort measure.
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The force laws (4) and the impact law (5) can be gathered in a description of measures

gi(q) = 0 : 0 ≤ ξi ⊥
∫

I
dPi ≥ 0 , gi(q)> 0 :

∫

I
dPi = 0, (7)

where the sign (or nullity) of gi and ξi is assumed to be constant during the interval I (e.g. a short
time step as used in a time discretization). For brevity, (7) is usually written as

gi(q) = 0 : 0 ≤ ξi ⊥ dPi ≥ 0 , gi(q)> 0 : dPi = 0, (8)

refraining from referring to the assumption on I .

2.1 DISCRETE-TIME PROBLEM
In the following we pursue an approach, where we first discretize the dynamics and then design a
state observer for the discrete (and therefore approximate) system. As explained in the Introduc-
tion, this alleviates the problem of state jumps in the observer design.
Here, we will make use of the scheme of Schatzman and Paoli [10, 11]. This scheme involves an
impact law on position level, and was originally motivated by the fact that it allows for a rigorous
convergence proof (which is not given for other, more widely used schemes such as the Moreau
scheme [9]). The reason for choosing this scheme is the fact that its direct formulation of the
contact/impact law on position level gives access to the maximal monotonicity property. However,
the practical application of this scheme is restricted to mechanical systems with frictionless uni-
lateral constraints which are decoupled such that wT

i M−1w j = 0 for i ̸= j, where wi =
∂gi
∂q . For

system (6), the Schatzman-Paoli discretization scheme can be written as

qk+1 = qk +∆tuk+1,

M(uk+1 −uk)+(Kqk +Duk − fk)∆t = WPk,
(9)

together with
ξξξ k := gk+1 + εgk−1,

0 ≤ ξξξ k ⊥ Pk ≥ 0.
(10)

Therein, ∆t is the (constant) time step and variables being evaluated (or approximated) at the
discrete times t = tk := k∆t are referred to with an index k, e.g. qk := q(tk). Likewise, the discrete
contact distance is gk = WTqk and the corresponding discrete contact velocity is γγγk = WTuk. To
keep it simple, we will assume all coefficients of restitution εi = ε to be equal. An important aspect
of the Schatzman-Paoli scheme that the discrete impact law (10), i.e. 0≤ gk+1+εgk−1 ⊥ Pk ≥ 0, is
formulated on position level. Other discretization schemes, which directly discretize the combined
contact/impact law (8) on velocity level, require the introduction of an index set, indicating which
contacts are closed at a given time instant. This is not the case for the Schatzman-Paoli scheme,
since the discrete impact law (10) is not a direct discretization of (8). To understand its meaning, let
ξξξ k vanish over two consecutive time steps, i.e. ξξξ k−1 = ξξξ k = 000. It then follows from the definition
of ξξξ k in (10) that

ξξξ k −ξξξ k−1

∆t
=

gk+1 −gk

∆t
+ ε

gk−1 −gk−2

∆t
= WT

(
qk+1 −qk

∆t
+ ε

qk−1 −qk−2

∆t

)

= WT(uk+1 + εuk−1) = γγγk+1 + εγγγk−1 = 000.
(11)

The last equality, γγγk+1 + εγγγk−1 = 000, shows that Newton’s impact law is fulfilled in a discretized
sense over two time steps. Velocity jumps that occur instantaneously in continuous time take place
over an interval of two time steps in the discretization, which can be seen as a regularization.
Interestingly, the discretized system (9), (10) can be rewritten as what is known as a discrete
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linear complementarity system (LCS, as introduced in [12, 13]). Indeed, by introducing the state
xk :=

(
qT

k uT
k

)T, equations (9) can be written as
(

I −∆tI
000 M

)
xk+1 =

(
I 000

−∆tK M−∆tD

)
xk +

(
000
W

)
Pk +

(
000

∆tI

)
fk. (12)

Note that we are writing variables and matrices related to the state-space description without ser-
ifs, whereas in our original description of the mechanical system we are using serifs (therefore,
variables denoted by the same letter, are assigned a different meaning depending on whether they
are written with or without serifs). After inverting the matrix on the left hand side, an update rule
for the state is obtained as

xk+1 =

(
I ∆tM−1

000 M−1

)[(
I 000

−∆tK M−∆tD

)
xk +

(
000
W

)
Pk +

(
000

∆tI

)
fk

]
, (13)

where 000 denotes a zero matrix of appropriate dimensions. Finally, after simple matrix multiplica-
tions we arrive at

xk+1 = Axk +BPk +Efk, (14)

with the corresponding system matrices A,B and E given by

A=

(
I−∆t2M−1K ∆t(I−∆tM−1D)
−∆tM−1K I−∆tM−1D

)
, B=

(
∆tM−1W
M−1W

)
, E=

(
∆t2M−1

∆tM−1

)
. (15)

The discrete contact/impact law (10) can also be written in the state variables. By using the contact
distance gk = WTqk and the first equation of (9) in (10) we have

ξξξ k = WT(qk+1 + εqk−1) = WT(qk+1 + ε(qk −∆tuk))

=
(
WT 000

)
xk+1 + ε

(
WT −∆tWT

)
xk

=
(
WT 000

)
[Axk +BPk +Efk]+ ε

(
WT −∆tWT

)
xk,

(16)

which can compactly be written as

ξξξ k = Cxk +DPk +Ffk, (17)

with the corresponding matrices

C=

(
[(1+ ε)I−∆t2M−1K]TW
∆t[(1− ε)I−∆tM−1D]TW

)T

, D= ∆tWTM−1W, F= ∆t2WTM−1. (18)

The matrix D in (18) is a scaled version of the so-called Delassus matrix WTM−1W [14], which
is symmetric and positive definite as we assume W to have full column rank. In summary, the
discrete system dynamics (14), (16) and (10) together with an output equation yk = Gxk (i.e. the
available measurements) we have a discrete linear complementarity system of the form

xk+1 = Axk +BPk +Efk, (19a)

ξξξ k = Cxk +DPk +Ffk, (19b)

0 ≤ ξξξ k ⊥ Pk ≥ 0, (19c)

yk = Gxk, (19d)

For a given xk and fk, the equations (19b) and (19c) form together a linear complementarity
problem (LCP) [15, 16], which has to be solved for ξξξ k and Pk in each time step.

Remark 1. As noted in [11], the time-stepping scheme above admits a unique solution if the
set A := {q ∈ R f | g(q) ≥ 0} of admissible positions is convex and the excitation fulfills some
regularity conditions. Here, we restrict ourselves to linear inequality constraints g(q) = WTq. It
is therefore straightforward to verify that A is always convex in our setting. Also, the LCP (19b),
(19c) has a unique solution if all principal minors of the matrix D are strictly positive (i.e. it is a
so-called P-matrix, see [15]), which is fulfilled since D is symmetric and positive definite.
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3 PASSIVITY-BASED OBSERVER
For continuous-time linear complementarity systems, Heemels et al. [17] suggest a Luenberger-
type state observer, where the observer gains are determined based on a linear matrix inequality.
In the following, we show that an equivalent procedure is applicable for a discrete linear comple-
mentarity system of the form

xk+1 = Axk +Bwk +Evk,

zk = Cxk +Dwk +Fvk,

0 ≤ zk ⊥wk ≥ 0,

yk = Gxk.

(20)

For a more standard notation, we denote the state by xk, the input by vk, the output by yk and
the complementary variables by zk and wk, playing the role of the kinematic variable ξξξ k and the
discrete impulse Pk in (19).
The proposed Luenberger-type state observer for the discrete LCS (20) is in analogy to [17]

x̂k+1 = Ax̂k +Bŵk +Evk +L1(yk − ŷk),

ẑk = Cx̂k +Dŵk +Fvk +L2(yk − ŷk),

0 ≤ ẑk ⊥ ŵk ≥ 0,

ŷk = Gx̂k,

(21)

where all observer related variables are written with a circumflex (ˆ ). The state observer contains
two correction terms, both linear in the output difference (which is known through measurements).
Defining the estimation errors as x̃k := xk − x̂k, z̃k := zk − ẑk and w̃k :=wk − ŵk, it follows that

x̃k+1 = (A−L1G)x̃k +Bw̃k,

z̃k = (C−L2G)x̃k +Dw̃k,

z̃Tk w̃k ≤ 0.

(22)

The last inequality in (22) expresses the maximal monotonicity of the discrete contact/impact law.
It is easily checked by expanding

z̃Tk w̃k = (zk − ẑk)
T(wk − ŵk) = zTk wk −zTk ŵk − ẑTk wk + ẑ

T
k ŵk. (23)

Therein, the first and the last term vanish and the two other terms are non-positive due to the in-
equality complementarities in (20) and (21). The inequality z̃Tk w̃k ≤ 0 is however not an inequality
complementarity. The equations (22) do therefore not form a full description of the error dynamics,
because w̃k cannot be expressed as a function of the estimation error x̃k. We rather have to use the
last three lines of (20) and (21). As a consequence, w̃k depends on xk, x̂k and vk, where x̂k can be
replaced by xk − x̃k (or the other way around). As pointed out in [17] for the continuous-time case,
the error dynamics is therefore non-autonomous and has two states, x̃k and xk (or alternatively x̃k
and x̂k). However, only the estimation error x̃k has to tend to zero as k increases.

Now, even though (22) is not a full description of the estimation error dynamics, it contains suf-
ficient information for a Lyapunov stability analysis. Indeed, we can select a quadratic Lyapunov
function candidate V (x̃k) = x̃Tk Px̃k with P= PT > 0 and calculate

V (x̃k+1)−V (x̃k) = x̃Tk+1Px̃k+1 − x̃Tk Px̃k

= (x̃k+1 + x̃k)
TP(x̃k+1 − x̃k)

= ((A−L1G)x̃k +Bw̃k + x̃k)
TP((A−L1G)x̃k +Bw̃k − x̃k),

(24)

which only contains the observer gains L1. After first subtracting and then again adding the term
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2z̃Tk w̃k, (24) can be written as

V (x̃k+1)−V (x̃k) =

(
x̃k
w̃k

)T(
(A−L1G)TP(A−L1G)−P (A−L1G)TPB− (C−L2G)T

BTP(A−L1G)− (C−L2G) BTPB− (D+DT)

)(
x̃k
w̃k

)

+2 z̃Tk w̃k,
(25)

which now contains both observer gains L1 and L2. Because z̃Tk w̃k ≤ 0, it follows that we have
V (x̃k+1)−V (x̃k)≤−µV (x̃k) if the matrix inequality

(
(A−L1G)TP(A−L1G)−P+µP (A−L1G)TPB− (C−L2G)T

BTP(A−L1G)− (C−L2G) BTPB− (D+DT)

)
≤ 0, (26)

holds. This matrix inequality is nonlinear in the unknowns L1,L2 and P. However, by introducing
S := PL1 and applying the Schur complement lemma, it can be checked that (26) is equivalent to
the linear matrix inequality (LMI)




−P+µP −(C−L2G)T ATP−GTST

−(C−L2G) −(D+DT) BTP

PA−SG PB −P


≤ 0. (27)

Since P is invertible, L1 can be recovered in a second step as L1 = P−1S.

Remark 2. The matrix inequality (26) is linked to a passivity condition: A linear time-invariant
discrete-time system of the form

xk+1 = Axk +Bwk,

yk = Cxk +Dwk,
(28)

written in short as system (A,B,C,D), is said to be passive if there exists a nonnegative function
V : Rn → R (called the storage function) with V (000) = 0 such that

V (xk+1)−V (xk)≤ yTk wk (29)

∀wk and ∀k.
It can be shown, that system (28) is passive if and only if if there exists a matrix P= PT ≥ 0 such
that the matrix inequality

(
ATPA−P+µP ATPB−CT

BTPA−C BTPB− (D+DT)

)
≤ 0 (30)

is fulfilled with µ = 0. As a stronger condition we call system (28) strictly passive, if there exists
a matrix P = PT ≥ 0 such that (30) holds for any µ > 0. In that case, it can be shown that the
inequality (29) holds strictly.

CONCLUSION
In this work, we proposed to attack the state observer problem for linear mechanical systems
subjected to unilateral constraints from a Nonsmooth Dynamics perspective. After approximating
the continuous-time problem using the Schatzman-Paoli scheme, we have shown that the discrete-
time system forms a discrete linear complementarity system for which, in principle, the discrete
adaptation of an existing passivity-based state observer can be applied. Thereby we achieved a
first step towards a state observer design for unknown impact time instants. A next step would be
to investigate under which conditions the linear matrix inequality, which is a sufficient condition
for the asymptotic stability of the estimation error dynamics, admits a solution. Furthermore, it is
necessary to analyze the behavior of the resulting observer gains as the time step ∆t tends to zero.
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ABSTRACT 

This work focuses its scope on the smooth contact approach and its management of 

multiple contact events, proposing several models developed under this methodology 

and discussing the main issues that have arisen when designing, modelling, and 

verifying them. The main purpose of this paper is to provide a reference to those 

researchers that work with smooth methods in the context of multibody dynamics of 

how to deal with them. Among the models presented, there are some engineering-

focused ones, whereas the readers can also find some more practical, day-to-day 

examples. 

Keywords: Contact phenomena, Contact detection, Smooth approaches, Multiple-

simultaneous impact systems, Multibody System dynamics, Error containment 

methods.  

1. INTRODUCTION 

Contact forces and impact events, which are present in almost all fields of engineering [1]–[3], 

provokes the appearance of harmful phenomena in mechanical systems (vibrations [4], wave 

propagation [5], fatigue [6], wear [7], crack [8] and so on). In impact events, sudden changes take 

place, in which the conditions of the mechanical system vary in very short times. This causes the 

appearance of great magnitude forces, energy dissipation processes and both velocities and 

accelerations discontinuities, among other issues. Contact/impact events are difficult to model 

and pose a challenge for the engineers due to the large number of variables that must be taken 

into account: contacting surfaces geometry, material properties, inclusion of friction phenomena, 

multiple-simultaneous impacts, …  

There are two main approaches when modelling contact events: the non-smooth approach and the 

models based on contact forces. Each one has a distinct set of advantages and limitations [9]: non-

smooth methods are known for considering bodies as rigids solids and their computational 

efficiency. However, some of these methods pose several issues when dealing with friction 

phenomena or multiple-simultaneous impact scenarios. On the other hand, models based on 

contact forces are continuous functions of the relative penetration (and its temporal derivative) of 

the contacting bodies, which are supposed to be deformable. Their main benefit is that there is no 

need to define unilateral restrictions. Nonetheless, the proper, accurate choice of the parameters 

of the definitions of the forces, as well as the right detection of the initial instant of contact [10], 

that makes the computing time to increase dramatically on certain occasions, are their most 

distinctive drawbacks. 

This paper focuses on the latter, collecting the expertise of several previous works based on this 

approach. Some of the most typical issues related to these methods are commented through a set 

of simple, day-to-day models. Then, different alternatives to overcome them are proposed.  

The manuscript is structured as follows: in Section 2 the main contact detection algorithms 
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associated to the described models are presented, along with some of the most used contact force 

models. In Sections 3, 4 and 5 the three models are introduced and outlined, underlining their 

most distinctive features along with some of the results obtained and the issues arisen during the 

tests. The main conclusions are drawn in Section 6. 

2. CONTACT DETECTION ALGORITHMS AND CONTACT FORCE MODELS 

In this section, some detection algorithms for the most basis contact interactions are presented 

and developed. Subsequently, the contact force models used in the models later described are 

introduced and detailed. 

2.1. Contact detection algorithms  

2.1.1.  Sphere-sphere interaction 

A system consisting of two spheres u and v with radii Ru and Rv, respectively, coming 

into contact is presented in Figure 1. Two different interactions can take place, according 

to the arrangement of the bodies: an external contact (Figure 1 (a)) or an internal one 

(Figure 1 (b)). 

 

 
(a) (b) 

Figure 1. Sphere-sphere contact interaction.  

The algorithm for calculating the relative penetration between the bodies varies 

minimally between both cases. For an external contact, the expression that defines 

penetration, δ, is  

 δ = Ru + Rv − ‖d⃗ ‖ (1) 

Whereas the value of the indentation in an internal interaction is given by the following 

equation  

 δ = Ru + Rv + ‖d⃗ ‖ (2) 

However, in this last case, the value of the largest radius is introduced with negative sign. 

For both interactions, if δ is negative, no contact will be happening, being the initial 

instant of contact when δ = 0. 

2.1.2.  Sphere-plane interaction  

Given the system shown in Figure 2 formed by a sphere u (its centre being on point C, 

with radius R) and an infinite plane v (its mass centre being on P), the implicit function 

or general equation is defined 

 𝑎 · x + 𝑏 · y + 𝑐 · z + 𝑑 = 0 (3) 
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Figure 2. Sphere-plane contact interaction.  

where a, b and c denote the components of the vector normal to the plane in the XYZ 

global frame, respectively. Using the coordinates of the plane mass centre, the value of 

parameter d is obtained 

 𝑑 = −𝑎 · rx
P − 𝑏 · ry

P − 𝑐 · rz
P (4) 

With 𝑑 the distance from the centre of the sphere to the plane, distuv, can be calculated 

 distuv = n⃗ v · r u
C + 𝑑 (5) 

The projection of the mass centre of the sphere on plane v, r v−sph
C  is then defined 

 r v−sph
C = r u

C − distuv · n⃗ v (6) 

This projection must be changed into local-frame plane coordinates when obtaining the 

value of the relative contact velocity 

 s v−sph
C = Av

−1 · (r v−sph
C − r v

P) (7) 

Once the distuv is calculated, δ can be derived  

 δ = R − distuv (8) 

Negative values of penetration indicate that there is no contact happening between the 

sphere and the plane. The initial instant of contact takes place when δ = 0. 

A set of more complex interaction can be derived from these simple algorithms, as shown 

in Figure 3 [11]. 

  
(a) (b) 

Figure 3. Complex contact interactions derived from the ones introduced 

above [11]: (a) Sphere-cylinder; (b) Sphere-parallelepiped.  
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2.2. Contact forces models  

Once the contact condition is met, a suitable constitutive law is required to obtain the value of the 

contact force. The interested reader can find a wide variety of works that collect a reasonably 

large number of contact force models [9], [12], [13], most of them proposed in the last decades. 

The models developed in this work make use of some of the most widely used and well-known 

contact laws.  

The overall integrity of the model and an accurate contact detection are pursued during the early 

stages of the design and development of a model. For this purpose, Hertzian contact model proves 

to be the right choice, which defines force as a function of the relative penetration between the 

contacting bodies: 

 FN = K · δn (9) 

where K is the contact stiffness parameter and n is an exponent that quantifies the degree of 

nonlinearity of the force-indentation relation [9]. The definition of the K varies depending on the 

geometries of the bodies involved in the contact process. Exponent n usually takes a value of 3/2, 

according to the work by Hertz, who assumed a parabolic distribution of the stresses in the contact 

area.  

The Hertzian model allows a simple definition of the contact force with a fairly good performance, 

for any contact interaction. However, it doesn’t consider any energy dissipation phenomena, 

which is inconsistent from a physical point of view. For this reason, a great number of models 

that deal with this issue have been developed.  

One of the most used constitutive laws is the one proposed by Lankarani and Nikravesh, with 

multiple applications [9] 

 FN = K · δ3/2 + χ · δ3/2 · δ̇ = K · δ3/2 · (1 +
3 · (1 − cr

2)

4
·

δ̇

δ̇(−)
) (10) 

where χ denotes the hysteresis damping factor, a measure of the energy dissipated throughout the 

contact process. cr is the coefficient of restitution, whereas δ̇(−) is the initial normal velocity and 

δ̇ represents the normal contact velocity. This model has proved to work well with contact events 

in which the value of cr is close to unity and the impact velocities are low. Impacts at velocities 

higher than the wave propagation velocity have an energy dissipation mechanism not considered 

in this model, mainly in form of permanent deformation. 

Another, more recent model is the one described by Flores et al., who considered the relation 

between the energy dissipated and the coefficient of restitution through the kinetic energy balance 

and the principle of conservation of momentum, the elastic strain energy stored due to the normal-

force work and the energy dissipated due to internal damping to develop a constitutive law that 

can be applied to the entire range of values of cr 

 FN = K · δ3/2 + χ · δ3/2 · δ̇ = K · δ3/2 · (1 +
8 · (1 − cr)

5 · cr
·

δ̇

δ̇(−)
) (11) 

These two last models include in their definitions the relative contact velocities and the coefficient 

of restitution. However, the main problem is that they only consider two bodies in their 

conception, so, when dealing with contact events in which more bodies are involved, some 

unexpected and/or inconsistent results can be obtained. For example, in some cases, the value of 

the normal impact velocity could lead to attractive forces if three bodies collide successively, 

something that is possible. Some of these issues and are presented in the following sections.  

3. FIRST MODEL: A BALL BEARING 

The first model presented is a classical ball bearing, as shown in Figure 4(a). One of the most 

typical causes of failure in rotary machine is the appearance of defects in bearings [14]. According 

to some reports, almost half of the failures of electric motors have their origin in bearing-related 

breakdowns [15]. This kind of failure can lead to more severe problems in other parts of the 

engine, increasing dramatically the financial losses. Traditional maintenance methods consist of 

replacing the bearing periodically once a certain operation time expires. Two issues are associated 

to these methods: this way of proceeding is experience-based, which cannot consider factors such 
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as a wrong assembling, poor lubrication, etc.; and the location of the machines, which may be not 

easily accessible (for example, offshore turbines). For these reasons, predictive maintenance 

techniques are quite useful to analyse these components with frequency-based studies, allowing 

engineers to determine accurately the condition of the bearing without a periodic replacement.  

  

(a) (b) 

Figure 4. Ball bearing model: (a) Matlab-generated animation of the first model; (b) Design 
of the bearing model, considering spring point-to-point elements to simulate the cage. 

In this primitive model, the cage was modelled by a set of spring elements between the centres of 

the balls, as shown in Figure 4(b). The stiffness parameter of these spring elements was quite 

high, in order to keep the stability of the system but, at the same time, allowing them to vibrate 

properly. The inner race is a fixed body, so the model resembles to a real bearing tested in a 

machine bench, where the bearing is fixed to the shaft. The driving force is applied to the outer 

race, transmitting the motion through friction forces to the balls.  

Two models were developed regarding contact interactions: the first one, based on the sphere-

sphere contact interaction described above, neglecting any kind of axial loads, and the latter, more 

advanced, considering axial loads through a sphere-cylinder contact interaction. During the 

development of this contact algorithm, the main issue faced was the proper detection of the initial 

instant of contact. For the test model shown in Figure 5, in which a ball bounces along Z axis, for 

an elastic impact, the initial position should be reached after each impact.  

Two Matlab integrators widely used were tested and compared. ODE45, which is based on the 

Runge-Kutta method developed by Dormand and Prince [16], stands out for being the most 

versatile Matlab integrator and being able to work reasonably well with almost all type of Initial 

Value Problems, thanks to its variable time step which allows an efficient computation. “45” 

makes reference to the order of formulas (4th and 5th) used by the algorithms. As can be seen in 

Figure 6, the values of the tolerances had a decisive impact on the results. Abstol denotes the 

absolute tolerance, a threshold value below which the value of the solution becomes unimportant. 

It determines the accuracy when the solution approaches zero. Reltol, and acronym for relative 

tolerance, is a measure of the error relative to the size of each solution component. It controls the 

number of correct digits in all solution components, except those smaller than threshold AbsTol. 

The main values for these two magnitudes are 1·10-6 and 1·10-3, respectively. For these, the results 

were a bit inconsistent, as the sphere gained energy after each rebound and surpassed the initial 

position at one point of the simulation. This issue was solved reducing these tolerances, first with 

an extreme value (1·10-12) and then looking for a balance between the accuracy of the results and 

the computational efficiency. The optimal values obtained for this model were Abstol = 1·10-6 and 

Reltol = 1·10-8, respectively. These provided consistent results, as the ball didn’t surpass the initial 

Z-axis position or lose energy after each impact either.  

However, ODE45 integrator is not the Holy Grail and experiences some issues when dealing with 

stringent expensive tolerances, which arose when an inelastic impact was tested instead. In the 

case shown in Figure 7, the contact event was modelled with a coefficient of restitution of 0.7, 

using the Lankarani and Nikravesh model introduced earlier. As can be seen, the simulation 

collapses with ODE45, even for really small tolerance values. 
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Figure 5. Matlab-generated animation of the sphere-cylinder interaction test model.  

 
Figure 6. Variation in the results given by ODE45 Matlab integrator when changing the 

values of the tolerances associated to it. 

 

Figure 7. Evolution of the Z-axis position of the bouncing ball, for different values of time 
step, for a impact defined by a cr = 0.7. 

In contrast with this integrator, ODE113, which is a PECE implementation of Adams-Bashforth-

Moulton methods [16], proved to give better results than ODE45, for a non-fully elastic impact. 

“113” makes reference to the fact that it is a variable order solver, from 1 to 13. PECE means 

Predict-Evaluate-Correct-Evaluate, where this second evaluation improves the accuracy of the 

method, as improved function values are used in the set of backpoints in the subsequent steps 

[17]. However, when testing the elastic impact (Hertzian model), this integrator led to a 

subsequent slight energy loss, preventing the ball from reaching the initial position.  
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Regarding the verification phase, the material properties of a ball bearing ER10K, presented in 

Table 1, were used. The PSD (Power Spectral Density) of the acceleration of the balls, for a 

healthy bearing, is shown in Figure 8. It can be observed a consistent behaviour of the model, as 

there is only a peak at low frequencies, caused by the own system, and there are no traces of 

defects. 

 

Figure 8. PSD of the acceleration of the balls generated by Matlab.  

Table 1. Properties of the reference bearing (obtained from REXNORD catalog and 

experimental measures) 

Property Value 

Shaft diameter / bore 15.875 mm 

Outside diameter 47.000 mm 

Mean diameter 31.438 mm 

Number of balls 8 

Ball diameter 7.938 mm 

Contact angle 0º 
 

4. SECOND MODEL: POOL/BILLIARD TABLE 

The second model proposed was presented in a previous work [18] and has been now further 

developed, as can be seen in Figure 9. Pocket algorithm has been defined and implemented, so 

the balls fall when they get to them. Starting from the sphere-regular parallelepiped interaction 

introduced earlier, a sphere-triangular prism contact detection algorithm was developed for the 

ball-cushion interaction around the pockets. Each cushion was then divided into three bodies, as 

shown in Figure 10. The rounded area of the cushion in the cushions is at the moment being 

developed from the sphere-cylinder interaction presented above.  

In this model, in which the balls can move freely in all directions, two different scenarios were 

considered: a permanent contact (between the balls and the cloth, as long as the ball is not hit so 

that it is lifted off the ground) and an intermittent one (between the balls themselves and these 

and the cushions). When calculating the value of both friction and contact forces, the peculiarities 

of each interaction had to be taken into account. The values of the parameters for each contact 

event were taken from experimental works [19]. Considering this, a Hertzian contact force was 
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chosen to calculate the value of normal force for the permanent contact, being the model proposed 

by Ambrósio the best choice to account for the friction force. On the other hand, for the ball-

cushion interaction, which are not-fully elastic, the model defined by Lankarani and Nikravesh 

was the optimal option to obtain the value of the normal force, with Ambrósio’s model 

characterising again the friction phenomena. Lastly, the contact events between the balls were 

modelled using again Lankarani and Nikravesh’s model for the normal force and two different 

models for the friction force: Threlfall’s approximation and a tangential velocity-dependent model 

developed by Alciatore [19]. The different values considered are shown in Table 2. 

  
(a) (b) 

Figure 9. Matlab-generated animation of the second model: (a) Previous version; (b) Current 

version.  

Table 2. Restitution and friction coefficients used to model the different interactions of the 

system [19], [20]. 

Interaction 
Contact force 

model 

Friction force 

model 
Friction coefficient Restitution coefficient 

Ball-ball 
Lankarani and 

Nikravesh 

Threlfall 0.06 0.93 

Alciatore 9.951·10-3 + 0.108·e-1.088·v 0.93 

Ball-cloth Hertz Ambrósio 0.2 - 

Ball-cushion 
Lankarani and 

Nikravesh 

- - 0.85 

Ambrósio 0.14 0.98 

 

 

Figure 10. Arrangement of the bodies that form the cushions of the pool/billiard table.  

 

Figure 11. Arrangement of the balls as a function of α. 
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(a) α = 10-9 m 

(b) α = 10-6 m 

(c) α = 2.1325735·10-4 m 

Figure 12. Evolution of the Z-axis position components of the balls, depending on the value 

of α chosen. 

In the early stages of the development of the model, balls static at the outset (coloured spheres in 

Figure 9) were arranged with a certain distance between their surfaces, avoiding the system to 

stall in excessively early times of the simulation due to the own definition of the forces. The 

coloured balls were always arranged so their mass centres formed an equilateral triangle. The 

distance between the mass centres of the coloured balls were defined by the expression d = 2 ·
Radius + α, being α a value set by the user, as shown in Figure 11. Several values were tested, 
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from the order of 10-9 to 10-4. These proved to have a decisive impact on the results obtained. For 

instance, with lower values of α, some of the balls (mainly the cue and the yellow ones) tended 

to increase their position in global Z-axis as the analysis progressed and they rolled on the cloth 

(see Figure 12). As α was increased, the maximum values reached by these balls reduced, 

providing a more reasonable behaviour of the model, i.e., balls did not tend to gain energy and 

increase their Z-axis position. For the random value set of order 10-4, the cue and yellow balls 

hardly moved in Z axis. 

This is also an example of how a certain configuration of one of the contact interactions affects 

to the rest of contact events that happen simultaneously. For this reason, in the first simulations 

performed with this model during the tuning phase, both normal force in the ball-cloth contact 

and gravity force were neglected, therefore keeping constant Z-axis position. This resulted in a 

substantial reduction of the computing time, from an average of 15500 s for the lower values of 

α and 7700 s for the random value, to clearly lower values of 1730 s and 440 s, respectively. This 

modification of the model had some consequences: friction forces normal to the cloth had to be 

neglected to avoid the balls to either fly over the cloth or to sink into it. 

5. THIRD MODEL: NEWTON’S CRADLE 

The third model presented is a device widely used in educational contexts: Newton’s cradle. This 

object is usually used to demonstrate the principles of conservation of momentum and 

conservation of energy through a set of swinging spheres (with the same size and mass) that 

collides elastically [21]. When a ball in one end of the chain is held at a certain height and released, 

so it collides with the remaining balls, the ball at the opposing end is kicked off and reaches about 

the same dropping height. 

 

Figure 13. Matlab-generated animation of the third model. 

The main assumptions in this model are usually to neglect friction phenomena and consider fully 

elastic contacts between the balls. In this case, the main issue that arose was the stall of the system 

when an inelastic contact (and, therefore, a contact model that considers explicitly normal relative 

velocity) was considered. Most dissipative contact force models, including the ones described 

above, include a ratio between the normal velocity at any given time and the value of the same 

magnitude at the initial instant of impact. If the bodies are together at that moment, which is the 

case of the static balls in Figure 13, these values will be the form of a 0/0 indeterminate form. A 

possible solution to this problem could be to consider a ratio of 1/1, but this is still under study.  

Some data can be extracted from the graphs from Figure 14. The method based on standard 

Lagrange multipliers led to a failure of the system and, therefore, inconsistent results. Both Matlab 

integrators introduced earlier, ODE45 and ODE113, made the ball gain energy after each impact 

and reach a higher position, which is also incoherent. As in the previous model, reducing the 

default tolerances values improved the results, but also made the system lose some energy. Again, 

ODE113 provided better results at a lower computational cost, as the tolerance values were 

reduced to 1·10-7, whereas ODE45 gave lower Z-axis positions for even lower tolerance values 

(1·10-10).  
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(a) Comparison between ODE45 and ODE113 Matlab integrators. 

 

(b) Comparison for different tolerance values, for ODE45 integrator. 

Figure 14. Evolution of Z-axis position of the ball released, throughout the simulation, for 

different settings of the integrators and constraint violation control methods.  

6. CONCLUSIONS 

Throughout this work, the main contact detection algorithms in the context of smooth multibody 

dynamics have been introduced and described. Some evolutions of these have been presented and 

applied to day-to-day systems and engineering applications, obtaining some promising results 

from each one of them, and facing some issues related to contact detection when performing 

dynamic analysis with Matlab software. Matlab default integrators proved to fall back when 

dealing with complex systems, specially when multiple contact/impact events take place 

simultaneously. Adjusting some parameters of these integrators improved considerably the 

results, but these settings involved a significant increase of the computational cost. However, 

there is still work to be made and some options that could be implemented, for example, a 

penetration-dependent integration scheme like the one some authors developed previously or to 

limit the number of iterations during each step. 
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ABSTRACT 

The computation of stress in beam elements requires the internal stress resultants like 

axial force and bending moments. For displacement-based beam elements, these 

resultants can be obtained 1) based on equilibrium, 2) consistent to the constitutive 

law or 3) based on load interpolation functions. Although the methods give similar 

results in case of small deformation, the discrepancies in case of large deformation 

are significant. This paper shows that the method based on equilibrium gives the most 

accurate results. 

Torsion of beam elements causes warping of the cross section. This warping is 

constrained at clamped ends of beam elements, causing extra stress. This paper shows 

a method to accurately obtain the corresponding internal stress resultants, i.e. the 

Saint-Venant torsion moment and bimoment. 

Keywords: Beam, stress, internal stress resultants, Vlasov beam theory, flexures. 

1. INTRODUCTION 

Structures are often analyzed using beam-elements. This paper is motivated by flexure 
mechanisms in particular, where each leaf spring can be modelled by multiple serial connected 

beam elements [1-5]. Fig. 1 shows an example. Stress in mechanisms that are modelled by beam-
elements can be computed in three steps, see Fig. 1: 

1. The displacements, deformations and reaction forces on each beam element are computed 

based on the stiffness relations; 

2. For each beam-element the internal stress resultants are computed at a finite number of points 

along the beam axis. These stress resultants are quantities like the axial force and bending 
moments. 

3. The stress-distribution on the cross section is computed based on the internal stress resultants. 

Formulas for this can be found in standard text books [6]. 
 

This paper focusses on step 2, the computation of internal stress resultants for three-dimensional 
beams undergoing large deformation. Firstly by comparing 3 different methods to compute five 

of the internal stress resultants and secondly by proposing an accurate method to interpolate the 
internal stress resultants related to torsion. 

The internal stress resultants can be determined from equilibrium equations or be computed 

consistent with the constitutive law. These two methods give a different result. For small planar 
elastic deformations though, it was concluded that the discrepancies between these methods are 
small [7-9]. 

However, the deformation in a beam element can be large. Moreover, by using beam elements 
that are accurate for larger deformation, less serial connected beam elements are required to model 
a single leafspring accurately, and this increases the computational efficiency. A significant 
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amount of literature is published on the modelling of stiffness of beam elements for large 
deformation. An overview can be found in [10]. The use of these beam models urges for an 
accurate method to obtain internal stress resultants in case of large deformation. 

Two specific beam formulations are used in this paper, a 2nd order formulation [11] and a 3rd order 
formulation [12]. The 3rd order formulation is based on the Hellinger-Reissner principle, which 

implies that interpolation functions for both load and displacement fields are used. The load 
interpolation functions can be used to obtain the internal stress resultants. This is the third method 
that is used in this paper for comparison. 

Torsion of a beam generally causes warping of the cross section. This warping however is 
constrained at the clamped ends of the beam element and this can cause significantly extra 
stiffness and stress [13, 14]. This effect can be included in a beam element by two extra 
deformation modes for the torsion, which is also applied in the used formulations [11, 12]. The 
correct computation of the corresponding stress requires two internal stress resultants, namely the 
bimoment and the Saint-Venant torsion. These stress resultants however cannot be derived very 
accurately by the three previously mentioned methods. This paper presents a more suitable 

method to obtain the bimoment and Saint-Venant torsion moment. 

The results in this paper are derived for the case of flexure mechanisms, using beam elements 

with thin rectangular cross section, in which the torsional warping is explicitly modelled. 
However, the results also apply to most other applications, beam formulations and different cross 
sectional shapes. 

 

 
Figure 1. Steps to obtain stress, shown for a parallel flexure guidance consisting of 
two flexures (each modelled by three beam elements) and a connecting rigid part,    
1) compute forces and displacements of a mechanism, 2) compute for each beam 
element the internal stress resultants 3) compute the stress distribution on the cross 
section 

 

2. METHOD 

This section shows how the internal stress resultants can be obtained based on the results of step 

1 of Fig. 1. These results are visualized in Fig. 2: the positions (𝒓𝑝 𝒓𝑞) and orientations (𝑹𝑝, 𝑹𝑞) 

of both nodes of the beam-element, and the forces (𝑭𝑝, 𝑭𝑞), moments, (𝑴𝑝, 𝑴𝑞) and bimoments 

(𝐵𝑝, 𝐵𝑞) at both nodes. Based on the nodal positions, orientations and the mode-shapes of the 

element, the local displacements, (𝑢𝑥(𝑠), 𝑢𝑦(𝑠), 𝑢𝑧(𝑠)) and local rotations (𝜙𝑥(𝑠), 𝜙𝑦(𝑠), 𝜙𝑧(𝑠)) 

can be obtained. Here 𝑠 is the axial coordinate from 0 to the undeformed length 𝐿0. Using these 

local displacements, the global positions (𝒓(𝑠)) and orientations (𝑹(𝑠)) inside the element can 

also be found. 

Seven internal stress resultants should be obtained: section 2.1 presents three methods to obtain 

the axial force, shear forces in the local 𝑦-direction and 𝑧-direction and the bending moment 

around the local 𝑦-axis and 𝑧-axis. Section 2.2 explains three methods to obtain the Saint-Venant 

torsion moment and the bimoment. 
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Figure 2. Beam-element, showing the forces, positions and orientations for both 
nodes and internally. Reference frame 𝑂 is the global reference frame. 

 

2.1. Internal stress resultants for extension, shear and bending 

 

Method A1 – Equilibrium. The internal stress resultants can be found based on equilibrium, 

using the values at both nodes: 

  𝑭𝐿(𝑠) = 𝑹𝑇(𝑠)𝑭𝑞, 𝑴𝐿(𝑠) = 𝑹𝑇(𝑠)(𝑴𝑞 + (𝒓(𝑠) − 𝒓𝑞) × 𝑭𝑞) (1) 

where the subscript 𝐿 emphasizes that it is expressed in the local reference frame 𝑹(𝑠). The local 

force is composed of the axial force and the 2 shear forces and the moment is composed of the 

total torsion moment and the 2 bending moments: 

 𝑭𝐿(𝑠) = {

𝐹𝑥(𝑠)

𝐹𝑦(𝑠)

𝐹𝑧(𝑠)

} , 𝑴𝐿(𝑠) = {

𝑀𝑥(𝑠)

𝑀𝑦(𝑠)

𝑀𝑧(𝑠)

}. (2) 

Method A2 – Constitutive law. The internal stress resultants are directly related to the derivatives 

of the local displacements: 

𝐹𝑥(𝑠) = 𝐸𝐴𝑢𝑥
′ (𝑠)                                                                                        

 𝐹𝑦(𝑠) = 𝐺𝐴𝜅𝑦 (𝑢𝑦
′ (𝑠) − 𝜙𝑧(𝑠)),         𝑀𝑦(𝑠) = 𝐸𝐼𝑦𝜙𝑦

′ (𝑠), (3) 

𝐹𝑧(𝑠) = 𝐺𝐴𝜅𝑧 (𝑢𝑧
′ (𝑠) + 𝜙𝑦(𝑠)) , 𝑀𝑧(𝑠) = 𝐸𝐼𝑧𝜙𝑧

′ (𝑠), 

where ( )′ defines a derivative to coordinate 𝑠. 𝐸 is the elasticity modulus of the material and 𝐺 

the shear modulus,  𝐴 is the cross sectional area, 𝜅 the shear correction factor according to Cowper 

[15] and 𝐼𝑦 and 𝐼𝑧 are the second moments of area. 

Method A3 – Load interpolation functions. The third order beam element is derived based on 

the Hellinger-Reissner principle. This implies that it is derived based on a combination of load 

interpolation functions and displacement interpolation functions of which the corresponding 

coordinates are computed in step 1 of Fig 1. These load interpolation functions (see eq. 24 of ref. 

[12]) give a direct estimation for the required internal stress resultants. 

2.2. Saint-venant torsion moment and bimoment 

Torsion causes warping of the cross section. At the clamped ends of a beam this warping is 

constrained, resulting in additional strain energy storage, which causes extra stiffness and stress. 

The internal stress resultant related to warping is the bimoment, 𝐵. The shear stress is related to 

the Saint-Venant torsion moment, 𝑇𝑥. According to Vlasov torsion theory [14] the total torsion 

moment is composed of the Saint-Venant torsion moment and the derivative of the bimoment: 

 𝑇𝑥(𝑠) + 𝐵′(𝑠) = 𝑀𝑥 (𝑠), (4) 

Below, three methods are given to compute the Saint-Venant torsion moment and the bimoment. 
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Method B1 – Interpolation. The bimoment is available at both nodes such that the bimoment 

can be obtained by a linear interpolation between these two values: 

 𝐵(𝑠) = −𝐵𝑝
𝐿−𝑠

𝐿
+ 𝐵𝑞

𝑠

𝐿
 (5) 

The Saint-Venant torsion moment is not available at the nodes so it cannot be obtained by 

interpolation. The Saint-Venant torsion moment can however be approximated by the total torsion 

moment 𝑇𝑥(𝑠) ≈ 𝑀𝑥 (𝑠), which is a good approximation far from the clamped ends. This total 

torsion moment 𝑀𝑥 (𝑠) can be computed based on equilibrium, see method A1, eq. (2). 

Method B2 – Constitutive law. The Saint-Venant torsion moment and bimoment are directly 

related to derivatives of the torsion angle: 

 𝑇𝑥(𝑠) = 𝐺𝐼𝑡𝜙𝑥
′ (𝑠),          𝐵(𝑠) = −𝐸𝐼𝜔𝜙𝑥

′′(𝑠) (6) 

where 𝐼𝑡 is Saint-Venant’s torsion constant and 𝐼𝜔 is Vlasov’s warping constant [14]. 

Method B3 – ODE. The Saint-Venant torsion moment and the bimoment can be solved based on 

the differential equation in eq. (4). According to eq. (6) the Saint-Venant torsion moment and 

bimoment are related like:  

 𝐵(𝑠) = −
𝐸𝐼𝜔

𝐺𝐼𝑡
𝑇𝑥

′(𝑠) (7) 

Substituting this result into eq. (4) gives the ordinary differential equation (ODE):  

 𝑇𝑥 −
𝐸𝐼𝜔

𝐺𝐼𝑡
𝑇𝑥

′′ = 𝑀𝑥(𝑠) (8) 

To solve for 𝑇𝑥 a homogeneous and a particular solution have to be obtained. 

For the particular solution 𝑀𝑥(𝑠) is approximated by a 4th order polynomial. This is done by first 

approximating the internal forces on the undeformed element (the orange, dotted line in Fig. 3a). 

The torsion 𝑀𝑥
∗(𝑠) and the shear force 𝐹𝑧

∗(𝑠) are linearly interpolated between their values on the 

nodes. The bending moment 𝑀𝑦
∗(𝑠) is approximated by a second order polynomial that 

corresponds to the moments on the nodes and satisfies 𝑀𝑦
∗′′(𝑠) = 𝐹𝑧

∗′(𝑠). Then, using equilibrium 

considerations, the total torsion moment at the deformed line (black dotted line in Fig. 3a) is 

computed by: 

 𝑀𝑥
(4𝑡ℎ)

(𝑠) = 𝑀𝑥
∗(𝑠) + 𝑀𝑦

∗(𝑠) ⋅ 𝜙𝑧(𝑠) − 𝐹𝑧
∗(𝑠) ⋅ 𝑢𝑦(𝑠) (9) 

The resulting relation is fourth order, assuming the displacement 𝑢𝑦(𝑠) to be a third order 

polynomial which is common in beam elements. Note that this equation neglects displacements 

in the z-direction as the shown beam element is very stiff in this direction. However, 

displacements in the z-direction could be accounted for in similar way as for the 𝑦-direction by 

including the term −𝑀𝑧
∗(𝑠) ⋅ 𝜙𝑦(𝑠) + 𝐹𝑦

∗(𝑠) ⋅ 𝑢𝑧(𝑠). Having a polynomial expression for 𝑀𝑥 (𝑠), 
the particular solution 𝑇𝑥

(𝑃)
 of the ODE is easily obtained. The corresponding bimoment can be 

obtained by using eq. (7). For a constant total torsion moment, the solution is 𝑇𝑥
(𝑃)

(𝑠) = 𝑀𝑥 ,
𝐵(𝑃)(𝑠) = 0. This indicates that the particular solution describes the bimoment due to a variation 

of the total torsion moment over the axial coordinate. 

The homogeneous solution describes the effects at the boundaries of a leafspring where the 

warping is usually fully constrained or completely released. The homogeneous solution of the 

ODE is: 

 𝑇𝑥
(𝐻𝐺)

(𝑠𝐿𝐹) = 𝐶1 cosh(𝜆𝑠𝐿𝐹) + 𝐶2 sinh(𝜆𝑠𝐿𝐹) , 𝜆 = √𝐺𝐼𝑡 𝐸𝐼𝜔⁄  (10) 

where 𝑠𝐿𝐹 is the axial coordinate for a whole leaf spring, from 0 to the undformed length 𝐿𝐿𝐹. 

The corresponding bimoment is, according to eq. (7): 

 𝐵(𝐻𝐺)(𝑠𝐿𝐹) = −√
𝐸𝐼𝜔

𝐺𝐼𝑡
(𝐶1 sinh(𝜆𝑠𝐿𝐹) + 𝐶2 cosh(𝜆𝑠𝐿𝐹)) 

The constants 𝐶𝑖 are computed based on the end-conditions of a full leafspring. For a clamped 
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end we have the boundary condition 𝑇𝑥 = 0 and for a free end we have the condition 𝐵 = 0 (see 

Fig. 3b). So the particular solution was computed for each beam element individually, where the 

homogeneous solution is computed for a whole leafspring at once. 

Note that as this method does not use the bimoment at the nodes that was computed in step 1 of 

Fig 1, it can also be used with beam elements that do not have warping modes. 

 

  
Figure 3. a) The particular solution is obtained using an estimation of the total 
torsion moment, which is derived based on an approximation of the forces on the 

undeformed line 𝑀𝑥
∗(𝑠), 𝑀𝑦

∗(𝑠) and 𝐹𝑧
∗(𝑠), and its deflection, 𝑢𝑦(𝑠), 𝜙𝑧(𝑠). b) The 

homogeneous solution is based on the end-points of a whole leafspring 

 

3. RESULTS 

This section applies the methods to investigate which method is most accurate. A 2nd order beam 

model [11] and a 3rd order model [12] are used, with slightly different deformation modes as 

derived in appendix A of [16]. A rectangular beam with the following dimensions and material 

properties is used: length: 𝐿 = 100 mm, width: 𝑤 = 10 mm, thickness: 𝑡 = 0.3 mm, material 

elasticity: 𝐸 = 200 GPa, Poisson ratio: 𝜈 = 0.3. Vlasov’s warping constant is computed as 𝐼𝜔 =
𝑤3𝑡3 144⁄ , see [17, 18]. The left side of the beam is fixed to the ground, the torsional warping at 

both sides is constrained and the right side is subjected to six different loading conditions, 

visualized in Fig. 4. 

 
Figure 4. Load cases of the leaf spring, modelled by 10 beam elements. The left side 

is always completely fixed, except for case 4. 1) bending rotation, 2) applied bending 
moment, 3) bending displacement in combination with a shear force, 4) the 
displacement of both ends is fixed and both ends are rotated to create a coupling 
between the axial and bending direction, 5) torsion, 6) torsion in combination with 
bending to create a significantly varying torsion over the axial coordinate. 

https://doi.org/10.3311/ECCOMASMBD2021-218

72



 

 
Figure 5. Resulting internal stress resultants as function of the axial coordinate 𝑠𝐿𝐹 
for two loading cases shown in Fig. 4. The leaf spring is modelled with 1, 3 and 10 
beam elements. Method A1 is applied with the 2nd order and with the 3rd order beam 
element. Method A2 is only applied with the 2nd order beam element (the results with 
the 3rd order element were worse in general). Method A3 can only be applied with 

the 3rd order element. 

 

Case 1 and 2 are simple, the only nonzero internal stress resultant is the bending moment around 
the z-axis which is constant. For these two cases all methods give the exact result. Fig. 5 shows 
results for case 3 and 4 to compare methods A1, A2 and A3. Some observations are: 

 The differences between the results of the three methods are significant if few beam 
elements are used. 

 The results show that all methods converge to the same result if many beam elements 
are used in series, indicating that all methods converge to the exact solution. One 

exception on this observation is in the shear force 𝐹𝑧 where method A2 and A3 give 
fundamentally wrong results. Appendix A explains this and shows that the resulting 
relative error in the final stress is small. 

  Method A1 converges the most rapidely to the exact solution when using more beam 
elements. The most imporantant reason for this is that this method accounts for local 

rotations of the cross section, i.e. the vector with internal foces 𝑭𝐿(𝑠) and the vector 

with internal moments 𝑴𝐿(𝑠) is rotated according to the orientation of the cross section 

𝑹(𝑠), see eq. (1). 

 The internal stress resultants obtained by method A1 are continuous between the 
elements, where this is not the case for the methods A2 and A3. 
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 The 3rd order beam element gives generally better results than the 2nd order beam 
element, especially in case 4. 

 

Fig. 6 shows results of torsion (method B1-B3). The following observations are made: 

 The bimoment on the beam nodes of case 5 is perfectly computed by the 3rd order beam 
element, but method B1 still gives a quite bad estimation inside the elements because of 

the linear interpolation. Method B2 also gives significant errors, even with 10 beam 
elements the bimoment at both ends is 40% off. Method B3 gives a perfect result for 
case 5, even with only one beam element. 

 In case 6 the total torsion moment varies over the axial coordinate and therefore the 
bimoment at the nodes is not accurately approximated by the 2nd order and 3rd order 
beam element if only 1 or 3 beam elements are used. Therefore method B1 gives a bad 
estimation of the internal bimoment. Method B3 gives a relatively accurate result, even 
with only 1 beam element. 

 The Saint-Venant torsion moment in case 6 is in method B1 approximated by the total 
torsion moment. Internally this approximation is quite good (for 3 or more beam 
elements) but not at both ends of the leaf spring. In method B2 clearly a lot of beam 
elements are required for an accurate estimation of the Saint-Venant torsion moment. 
Method B3 gives an accurate result with 3 or more beam elements. 

 

 

 

 
Figure 6. Resulting internal bimoment and Saint-Venant torsion moment as function 

of the axial coordinate 𝑠𝐿𝐹. The leaf spring is modelled with 1, 3 and 10 beam 
elements. Results are given for methods B1-B3 based on results of the 2nd order or 
3rd order beam element. 
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In summary, method A1 gives more accurate results than method A2 and A3. The most important 

reason is that it is easy to evaluate the nonlinear equilibrium-equation (see eq. (1)), therefore 

method A1 accounts for the effect of local displacements and rotations of the cross sections on 

the equilibrium. Method A2 and A3 use interpolation functions that are based on equilibrium in 

the undeformed state. 

Method B3 gives the most accurate results for torsion. Similar to method A1, this method 
obtains an accurate estimation of the total torsion moment based on equilibrium and the local 

displacements of the beam. Based on this estimation the Saint-Venant torsion moment and the 
bimoment can be obtained accurately. 

As this reasoning is not limited to the used beam dimensions and loading conditions, method A1 
and B3 will be the most accurate for displacement based elements in general. 

 

4. CONCLUSIONS 

The computation of stress in beam elements requires the internal stress resultants to be obtained. 

These resultants can be obtained by different methods, which result in significant different results 

in case of large deformation. Three methods were compared to obtain the internal stress resultants 

for extension, shear and bending. The method based on equilibrium equations gives the most 

accurate results. 

Three other methods are proposed to obtain the internal stress resultants related to torsion, i.e. the 

Saint-Venant torsion moment and the bimoment. It was found that these resultants can be obtained 

accurately based on the solution of the differential equation that relates the total torsion moment, 

the Saint-Venant torsion moment and the bimoment. 

The results indicate that a right choice of the method to obtain the internal stress resultants is 

highly relevant for an accurate computation of the stress in beam elements undergoing large 

deformation. 
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APPENDIX A – INCONSISTENCY INTERNAL SHEAR FORCE 

This appendix explains why an inconsistency is found between the shear force that is obtained 

based on the equilibrium-method and the shear force obtained by the constitutive law, even for 

short beams. The inconsistency occurs in generalized strain beam elements. First the relations of 

these elements are summarized. Then two causes of the inconsistencies are derived. Finally, it is 

shown why the error in the final stress is small in engineering practice. 

The derivations in this appendix use the formulation of the 2nd order element [11], but also hold 

for the used 3rd order element, which are both generalized strain elements. 

Summary generalized strain beam formulation 

In a generalized strain beam element deformation modes are defined, which are related to the 

nodal coordinates 

 𝜺 = 𝓓(𝒙) (11) 

The used beam elements have 8 deformation modes (eq. 7 of [11]), but only the first 6 are relevant. 

They are visualized in Fig. 7. 
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Figure 7. Six deformation modes of the beam element 

 

The generalized forces of these deformation modes are called generalized external stresses, 𝝈. 

They are related to the generalized strains by a constant stiffness matrix: 𝝈 = 𝑺𝜺. The exact 

expression for the stiffness matrix is given in eq. 40 of [11], but not relevant for the current 

derivation. According to the principle of virtual work the nodal forces are related to the 

generalized stresses (eq. 15 of [11]) 

 𝑭 = 𝓓,𝒖
𝑇 𝝈 (12) 

in which 𝑭 consist of 12 terms, i.e. the forces and moments at both nodes. 𝓓,𝒖
𝑇  is the derivative of 

𝓓(𝒙) to the nodal displacements and rotations, 𝒖. The exact relations given in eq. 10-15 of [11]. 

The relevant results (eq. 16 of [11]) are: 

 

𝜎1 = −𝐹𝑥
𝑝

= 𝐹𝑥
𝑞

(normal force)

𝐿𝜎2 = −𝑀𝑥
𝑝

= 𝑀𝑥
𝑞

(torsion moment)

𝐿𝜎3 = −𝑀𝑦
𝑝

,   𝐿𝜎4 = 𝑀𝑦
𝑞

𝐿𝜎5 = −𝑀𝑧
𝑝

,   𝐿𝜎6 = 𝑀𝑧
𝑞     } (bending moments)

 (13) 

These reaction forces are also visualized in Fig. 8.  

 

 

  
Figure 8. Reaction forces on a beam element with torsion 

 

 

Cause 1 – Different coordinate-axes 

In short the first reason for inconsistency is that the relations between the deformation modes and 

coordinates are defined using different coordinate axes such that also the relations between 𝝈 and 

reaction forces are defined in different axes. Fig. 8 shows for example that 𝑀𝑧
𝑝
 and 𝑀𝑦

𝑝
 have a 

different orientation. 
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It can be easily seen from Fig. 8 that based on method A1 (equilibrium), the shear force at node p 

should be: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
cos(𝜃2) −

𝑀𝑧
𝑞

𝐿
sin(𝜃2) (14) 

The same result is obtained by substituting eq. (13) into the full expression of eq. (12). By 

assuming a short beam element, such that also the deformations become small, we can linearize 

this result and substitute 𝜃2 = 𝜙𝑥
′ 𝐿: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
−

𝑀𝑧
𝑞

𝐿
𝜙𝑥

′ 𝐿 = −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
− 𝑀𝑧

𝑞
𝜙𝑥

′  (15) 

which is the internal shear stress at node p that is found from equilibrium. 

 

The resulting shear force at node 𝑝 based on method A2 (constitutive law) is intuitively only 

related to the moments around the 𝑦-axis: 

 𝐹𝑧
𝑝

= −
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (16) 

This result can also be obtained by a more detailed derivation: First substituting the mode shapes 

(eq. 38 of [11]) into eq. (3) of this paper: 

 𝐹𝑧
𝑝

= 𝐸𝐴𝜅𝑧 ⋅ (𝑢𝑧
′ (𝑠) + 𝜙𝑦(𝑠)) =

𝐸𝐴𝜅𝑧

𝐿
⋅

Φ𝑧

2(1+Φ𝑧)
(𝜀4 − 𝜀3) (17) 

where Φ𝑧 = 12𝐸𝐼𝑦 𝐺𝐴𝜅𝑦𝐿2⁄ . Then the inverse of the stiffness relation (eq. 40 of [11]) and eq. 

(13) can be used to obtain: 

 𝐹𝑧
𝑝

=
1

𝐿
(−𝜎3 + 𝜎4) = −

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (18) 

 

The difference in result between the equilibrium method and the constitutive-law-method is the 

term −𝑀𝑧
𝑞

𝜙𝑥
′ . This term can be nonzero, even for very short beams. As the bending moment in a 

very short beam is almost constant we will write this as −𝑀𝑧𝜙𝑥
′  

 

Cause 2 – Second order term in the deformation modes 

In the 2nd order beam element a second order term is included which correct for the fact that the 

local rotation matrices are not linear in the virtual rotations around the 𝑥, 𝑦 and 𝑧 axis (eq. 45 of 

[11] gives the full expression of the rotation matrix). This causes a coupling term between the 

torsional deformation (𝜀2) and the bending deformation (𝜀3 till 𝜀6). This effect is included by 

modifying the strain definitions (see eq. 54 of [11]). The modification that causes an inconsistency 

is in the torsional mode: 

 𝜀2̂ = 𝜀2 +
1

𝐿
(−𝜀3𝜀6 + 𝜀4𝜀5) (19) 

where 𝜀2̂ is the second order generalized strain definition and the other generalized strains are the 

linear definitions as visualized in Fig. 7. For short elements, all the generalized strains become 

small, meaning that this second order term with squared generalized strains becomes negligible. 

The reason for the inconsistency is that the extra term in the derivative �̂�,𝒖
(2)

= 𝑑𝜀2̂ 𝑑𝒖⁄  does not 

become zero for short beams. This causes an extra term in eq. (12), which causes an inconsistency 

as derived in more detail below. 

Eq. (12) can be evaluated for 𝐹𝑧
𝑝
. Note that 𝐹𝑧

𝑝
 is a term in 𝑭 such that only the derivative of 𝓓 to 

the corresponding displacement, 𝑧𝑝, is required: 

 𝐹𝑧
𝑝

= �̂�,𝑧𝑝
𝑇 𝝈 = (

𝜕�̂�

𝜕𝑧𝑝
)

𝑇

𝝈 =
𝜕𝜀1

𝜕𝑧𝑝
𝜎1 +

𝜕�̂�2

𝜕𝑧𝑝
𝜎2 +

𝜕𝜀3

𝜕𝑧𝑝
𝜎3 +

𝜕𝜀4

𝜕𝑧𝑝
𝜎4 +

𝜕𝜀5

𝜕𝑧𝑝
𝜎5 +

𝜕𝜀6

𝜕𝑧𝑝
𝜎6, (20) 

in which the nonzero terms in the derivative of 𝜀2̂ are, see eq. (19): 
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𝜕�̂�2

𝜕𝑧𝑝
=

𝜕𝜀2

𝜕𝑧𝑝
−

𝜀6

𝐿

𝜕𝜀3

𝜕𝑧𝑝
−

𝜀3

𝐿

𝜕𝜀6

𝜕𝑧𝑝
+

𝜀5

𝐿

𝜕𝜀4

𝜕𝑧𝑝
+

𝜀4

𝐿

𝜕𝜀5

𝜕𝑧𝑝
 (21) 

In a beam element that is only deformed in bending around the 𝑧-axis, eq. (20) reduces to: 

 𝐹𝑧
𝑝

= − (
𝜀6

𝐿
+

𝜀5

𝐿
) 𝜎2 − 𝜎3 + 𝜎4 = (𝜃6 + 𝜃5)

𝑀𝑥

𝐿
+

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (22) 

For short beam elements the resulting terms are: 

 𝐹𝑧
𝑝

=
𝜃6+𝜃5

𝐿
𝑀𝑥 +

𝑀𝑦
𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
= 𝜙𝑧

′ 𝑀𝑥 +
𝑀𝑦

𝑝

𝐿
+

𝑀𝑦
𝑞

𝐿
 (23) 

This is the internal stress resultant found by method A1 (equilibrium). The internal stress resultant 

obtained by method A2 (Constitutive law) is given in eq. (16). So the inconsistent term is 𝜙𝑧
′ 𝑀𝑥. 

This is a nonzero error, even for very short beam elements. 

 

Influence of the inconsistencies on the total stress 

The inconsistent terms in the shear stress are: −𝑀𝑧𝜙𝑥
′  and 𝜙𝑧

′ 𝑀𝑥 as derived above. The resulting 

stress terms can be shown to be negligible for initially straight beams of common materials, based 

on classical beam theory, see e.g. [6]. For common materials we can assume that the maximum 

strain is limited to 1% and the maximum shear strain to 0.5%, this limits the curvatures 𝜙𝑥
′  and 

𝜙𝑧
′. For bending of a beam with rectangular cross section of thickness 𝑡 and width 𝑤 (Fig. 9) the 

relation between the highest strain and the bending curvature is: 

  𝜀𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

=
𝑡

2
𝜙𝑧

′ ≤ 0.01 ⇒ 𝜙𝑧
′ ≤

1

50𝑡
 (24) 

For torsion, the relation between the highest shear stress and the curvature is approximately: 

 𝛾𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

= 𝜙𝑥
′ 𝑡 ≤ 0.005 ⇒ 𝜙𝑥

′ ≤
1

20𝑡
 (25) 

The following relations exist between the highest stress and the internal stress resultants of shear, 

bending and torsion: 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟)

=
3

2𝑤𝑡
⋅ 𝐹𝑧(𝑠),          𝜎𝑥𝑥 𝑚𝑎𝑥

(𝑏𝑒𝑛𝑑)
=

6

𝑤𝑡 2 𝑀𝑧(𝑠),          𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

=
6

𝑤𝑡 3 𝑇𝑥(𝑠) (26) 

Using these formulas we can relate the inconsistency in shear stress because of the terms −𝑀𝑧𝜙𝑥
′  

and 𝜙𝑧
′ 𝑀𝑥 to the existing stress of bending and torsion, accounting for the constraints in eqs. 

(24,25): 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠)

=
3

2𝑤𝑡
|𝜙𝑧

′𝑀𝑥 − 𝑀𝑧𝜙𝑥
′ | ≤

3

2𝑤𝑡
|

𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

𝑤𝑡2

6
⋅

1

50𝑡
−

𝜎𝑥𝑥  𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

𝑤𝑡2

6
⋅

1

20𝑡
| (27) 

By simplifying this equation we obtain the maximum extra shear stress: 

 𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑠ℎ𝑒𝑎𝑟,𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠) ≤ |

𝜏𝑥𝑧 𝑚𝑎𝑥
(𝑡𝑜𝑟)

100
−

𝜎𝑥𝑥 𝑚𝑎𝑥
(𝑏𝑒𝑛𝑑)

80
| (28) 

Which indicates that the error in shear stress is below 1/80 of the total stress. Moreover, both 

terms in these equation are likely to partly cancel each other, which further reduces the error. 

 

 
Figure 9. Rectangular cross section with thickness 𝑡 and width 𝑤 
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ABSTRACT

Many industrial applications require the displacement of liquid-filled containers on
planar paths, by means of linear transport systems or serial robots. The movement
of the liquid inside the container, known as sloshing, is usually undesired, so there
is the necessity to keep under control the peaks that the liquid free surface exhibits
during motion. This paper aims at validating a model for estimating the liquid sloshing
height, taking into account 2-dimensional planar motions of a cylindrical container,
with accelerations up to 9.5 m/s2. This model can be exploited for assessment or
optimization purposes.
Experiments performed with a robot following three paths, each one of them with
different motion profiles, are described. Comparisons between experimental results
and model predictions are provided and discussed.

Keywords: Sloshing, Prediction model, Validation, Experiments, 2-Dimensional mo-
tion.

1 INTRODUCTION
The transport of containers filled with liquids finds application in several industrial contexts, e.g.

in food&beverage or pharmaceutical production and packaging lines. Typically, the manipulation
of such containers is assigned to linear transport systems or industrial serial robots; in many cases
the required motion follows planar curves. The prediction of the liquid movement inside the con-
tainer, known as sloshing, is important to prevent the liquid from overflowing. Additionally, a
reliable sloshing prediction model can be exploited to limit the stirring of the liquid during task
execution.
For this purpose, machine-learning methodologies are presented in [1] and [2], where, starting
from data collection, predictive algorithms are built to inspect the behavior of discrete liquid par-
ticles inside a cylindrical container. This technique, though very powerful, requires experiments
to be run in advance, together with a not negligible computational effort.
In [3] the coefficients of the nonlinear sloshing dynamics model presented in [4] are provided to
evaluate the sloshing height for 3-dimensional motions, leading to a complex formulation, which
may be difficult to use.
A ready-to-use alternative is represented by the development of equivalent discrete mechanical
models. The literature considers two main discrete approaches for the modelling of sloshing dy-
namics inside a container subject to 2-dimensional planar motion [5]: a spherical pendulum and a
2-dof mass-spring-damper system. In the former case, the generalized coordinates describing the
system are the angles defining the position of the pendulum mass, whereas, in the latter one, they
are the mass displacements from the reference position. Although being intuitive, the use of the
angular coordinates of the pendulum mass to assess the sloshing behavior of the liquid (see [6, 7])
lacks physical meaning, above all when the knowledge of the liquid peak height is important. For
this reason, in the spherical pendulum model used in [8], [9] and [10], the sloshing height is es-
timated by means of the tangent functions of the spherical coordinates. However, estimating the
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sloshing height by means of the tangent of the pendulum angles may lead to singularity conditions,
when the container acceleration is high, since in this case these angles can approach 90◦ and the
tangent tend to assume unrealistic high values.
To overcome this drawback, a novel approach, based on the mass-spring-damper model [11], is
proposed in [12] for the sloshing-height estimation. This model is validated for 1-dimensional
motions and the authors propose the possible extension to planar motions, but no experimental val-
idation is provided. The latter is the objective of this paper, particularly referring to 2-dimensional
planar motions of a cylindrical container.
The paper is structured as follows. Section 2 presents the model parameters and the equations of
motion (EOMs) of the corresponding generalized coordinates. Section 3 provides the formulation
of the sloshing-height estimation. In Section 4, the results from an experimental campaign are
described and discussed. Lastly, in Section 5 conclusions are drawn and suggestions for future
developments are given.

2 SLOSHING MODEL
2.1 Model Parameters
We will consider a cylindrical container of radius R, filled with a liquid of height h and mass mF .
A simplified discrete mechanical model can be used to reproduce the liquid-sloshing dynamics.
In particular, the mass-spring-damper model comprises a rigid mass m0 (whose signed vertical
distance from the liquid’s center of gravity G is h0) that moves rigidly with the container, and a
series of moving masses mn, with each one of them representing the equivalent mass of a sloshing
mode (Fig. 1a). Each modal mass mn is restrained by a spring kn and a damper cn, and its signed
vertical distance from G is hn. The model parameters can be determined by imposing a number of
equivalence conditions with the original system [5]:

• the overall mass must be the same:

mF = m0 +
∞

∑
n=1

mn (1)

• the height of the center of gravity G must remain the same for small oscillations of the
liquid:

m0h0 +
∞

∑
n=1

mnhn = 0 (2)

• the natural frequency associated with the n-th mode must coincide with the one that can be
obtained from the continuum model:

ω2
n =

kn

mn
= g

ξ1n

R
tanh

(
ξ1n

h
R

)
(3)

• the sloshing force acting on the container wall must be the same as the one calculated from
the continuum model:

mn = mF
2R

ξ1nh(ξ 2
1n−1)

tanh
(

ξ1n
h
R

)
. (4)

In Equations (3) and (4), ξ1n is the root of the derivative of the Bessel function of the first kind
with respect to the radial coordinate r, for the 1st circumferential mode and the n-th radial mode
[13], while g is the gravity acceleration. The damping ratio ζn =

cn

2
√

knmn
can be determined by

using empirical formulas [5].
For a container under 2-dimensional motion on the horizontal xy plane, the excitation is provided
by the container accelerations along the x and y directions, i.e. S̈0 = [ẍ0 ÿ0]

T . The motion of the n-
th sloshing mass is described by the generalized coordinates (xn,yn), whose definition is illustrated
in Fig. 1b. The latter are then used to compute the liquid sloshing height.
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(a) Model Parameters. (b) Top view showing the n-th
generalized coordinates.

(c) Sloshing mass sliding on a
parabolic surface.

Figure 1: Mass-spring-damper model.

2.2 Equations of Motion
In general, three dynamic regimes are possible [5]:

• small oscillations in which the liquid free surface remains planar (Fig. 2a);

• relatively-large-amplitude oscillations in which the liquid free surface is no longer planar
(Fig. 2b);

• strongly nonlinear motion, where the liquid free surface exhibits instantaneous peaks char-
acterized by swirling shapes.

While the third motion regime will not be object of the present study, the first and second cases
can be analyzed by means of a linear mass-spring-damper model (L model) and a nonlinear mass-
spring-damper model (NL model), respectively.
The NL model considers the sloshing mass mn as sliding on a parabolic surface, with an attached

nonlinear spring of order w (Fig. 1c) [11]. The analytical expression of the parabolic surface
allows the writing of the vertical coordinate zn as a function of xn and yn, namely:

zn =
Cn

2R
(x2

n + y2
n) (5)

(a) Assumption of planar free surface. (b) Assumption of nonplanar free sur-
face.

Figure 2: Liquid free-surface shapes.
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where Cn = ω2
n

R
g

. The time derivative of Equation (5) yields:

żn =
Cn

R
(ẋnxn + ẏnyn) (6)

The nonlinear spring exerts the forces αnknx2w−1
n and αnkny2w−1

n , along the x and y direction re-
spectively. In this paper, we choose w = 2 and αn = 0.58 [11]. If the radial generalized coordinate
rn =

√
x2

n + y2
n is introduced, the nonlinear-spring force in the radial direction can be written as

αnknr2w−1
n .

The equations of motion (EOMs), describing the time evolution of the generalized coordinates
(xn,yn), can be obtained by means of the Lagrange Equations:





d
dt

( ∂T
∂ ẋn

)
− ∂T

∂xn
+

∂V
∂xn

=− ∂D
∂ ẋn

d
dt

( ∂T
∂ ẏn

)
− ∂T

∂yn
+

∂V
∂yn

=− ∂D
∂ ẏn

(7)

where:

• the kinetic energy T of the n-th sloshing mass can be computed by taking into account its
velocity ṡn = [ẋn ẏn żn]

T , the container velocity Ṡ0 = [ẋ0 ẏ0]
T and by exploiting the Equation

(6):

T =
1
2

mn[(ẋ0 + ẋn)
2 +(ẏ0 + ẏn)

2 + ż2
n] =

1
2

mn

[
(ẋ0 + ẋn)

2 +(ẏ0 + ẏn)
2 +

C2
n

R2 (ẋnxn + ẏnyn)
2
]

(8)

• the potential energy V considers the contribution of gravity and nonlinear-spring forces,
namely:

V = mngzn +
∫ rn

0
αnknr2w−1

n drn = mng
Cn

2R
(x2

n + y2
n)+

αnkn

2w
(x2

n + y2
n)

w (9)

• the Rayleigh function D accounts for energy dissipation:

D =
1
2

cn(ẋ2
n + ẏ2

n + ż2
n) = mnζnωn

[
ẋ2

n + ẏ2
n +

C2
n

R2 (ẋnxn + ẏnyn)
2
]
. (10)

The substitution of Equations (8), (9) and (10) in the system (7) leads to the formulation of two
coupled EOMs for the NL model:




ẍn +2ωnζn[ẋn +C2
n(x

2
nẋn + ynẏnxn)]+C2

n(xnẋ2
n + x2

nẍn + xnẏ2
n + xnÿnyn)+

ω2
n xn[1+αn(x2

n + y2
n)

w−1]+
ẍ0

R
= 0

ÿn +2ωnζn[ẏn +C2
n(y

2
nẏn + xnẋnyn)]+C2

n(ynẏ2
n + y2

nÿn + ynẋ2
n + ynẍnxn)+

ω2
n yn[1+αn(x2

n + y2
n)

w−1]+
ÿ0

R
= 0

(11)
where xn = xn/R, yn = yn/R. As far as the L model is concerned, the linearization of the EOMs
in Equation (11) provides two decoupled EOMs in the generalized coordinates (xn,yn) of the n-th
mode: {

ẍn +2ζnωnẋn +ω2
n xn =−ẍ0

ÿn +2ζnωnẏn +ω2
n yn =−ÿ0

(12)
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Table 1: SH estimation for a 1-dimensional planar motion.

L model ηn =
4hmn

mF R
yn (19)

NL model ηn =
ξ 2

1nhmn

mF R
yn (20)

3 SLOSHING-HEIGHT ESTIMATION
3.1 1-Dimensional Motion
If only a 1-dimensional excitation in the y direction is provided and the phenomenon of rotary
sloshing is neglected [5], solely the generalized coordinate yn is different from zero. In such a
case, the conservation of the center of gravity y-coordinate, between the continuum model and the
equivalent model, yields:

yGmF =
∞

∑
n=1

ynmn + y0m0 =
∞

∑
n=1

ynmn (13)

Considering a cylindrical container of section S = πR2, filled with a liquid of height h, yG can be
computed as:

yG =
1

Sh

∫∫

S

∫ h
2+η(r,θ ,ηn)

− h
2

y dzdS =
1

πR2h

∫ R

0

∫ 2π

0

∫ h
2+η(r,θ ,ηn)

− h
2

r2 sinθ dzdθdr, (14)

where the function η(r,θ ,ηn) describes the liquid free-surface shape, ηn is the sloshing height of
the n-th mode, (r,θ) are the polar coordinates, with x = r cosθ , y = r sinθ , dS = r dθdr. As for
the L model, the function η(r,θ ,ηn) describes a plane (Fig. 2a):

η(r,θ ,ηn) =
∞

∑
n=1

ηn
r
R

sinθ , (15)

whereas, for the NL model, the nonplanar free surface can be described by means of the first-kind
Bessel function (Fig. 2b), namely:

η(r,θ ,ηn) =
∞

∑
n=1

ηn
J1(ξ1n

r
R)

J1(ξ1n)
sinθ . (16)

Independently from the adopted function η , the expression of yG from Equation (14) can be used in
Equation (13) to express ηn as a function of the model parameters and the generalized coordinates
(xn,yn), with the latter being obtained by solving the EOMs (see Section 2.2). The L-model
assumption of planar surface leads to:

yG =
1

πR2h

∫ R

0

∫ 2π

0

∫ h
2+∑ηn

r
R sinθ

− h
2

r2 sinθ dzdθdr =
R
4h

∞

∑
n=1

ηn (17)

Regarding the NL model, by exploiting one of the Bessel function properties, i.e.
∫ R

0 r2J1(ξ1n
r
R) dr =

R3 J1(ξ1n)

ξ 2
1n

, yG can be evaluated as:

yG =
1

πR2h

∫ R

0

∫ 2π

0

∫ h
2+∑ηn

J1(ξ1n
r
R )

J1(ξ1n)
sinθ

− h
2

r2 sinθ dzdθdr =
R
h

∞

∑
n=1

ηn

ξ 2
1n

(18)

Inserting the results from Equations (17) and (18) in Equation (13) allows the formulation of the
n-th sloshing height (SH) for the L and NL models, respectively, as shown in Table 1.
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3.2 2-Dimensional Motion
When accounting for a 2-dimensional excitation, the plane Π, on which the maximum sloshing
height (MSH) occurs, changes its orientation instantaneously, according to a rotation about the
z-axis by the angle (Fig. 1b):

φn = arctan
(yn

xn

)
(21)

If the liquid behavior is analyzed on the plane Π at every instant, Equation (13) can be extended
to the radial coordinate of G, remembering that rn =

√
x2

n + y2
n:

rGmF =
∞

∑
n=1

rnmn =
∞

∑
n=1

mn

√
x2

n + y2
n (22)

Equations (17) and (18) can be used to express rG in terms of ηn, depending on the adopted model.
The approach seen in Section 3.1 allows to write the formulas for the n-th maximum sloshing
height (MSH) evaluation, both for the L model and the NL model, considering a 2-dimensional
motion of the container (Table 2).

3.3 Remarks
By looking at Tables 1 and 2, one can point out that, for equal values of the generalized coordinates
(xn,yn), the ratio between ηn obtained from the L model in Equations (19, 23) and ηn from the
NL model in Equations (20, 24) is always 4/ξ 2

1n. If only the 1st mode is considered, this ratio is
equal to 4/ξ 2

11 ≈ 1.18 and shows that the assumption of planar free surface always overestimates
the sloshing height compared to the assumption of a nonplanar free surface. Furthermore, while
in Equations (19, 20), ηn has the same sign of yn, in Equations (23, 24) ηn is always positive.
This means that Equations (19, 20) express the trend of the sloshing height on only one side of the
container (on the other side, the sloshing height is estimated as the opposite of ηn): in this case,
we will simply talk about sloshing height (SH). Conversely, in Equations (23, 24), ηn indicates
the maximum peak that occurs on the container wall (on a plane oriented as described in Equation
(21)): in this case, we will use the expression maximum sloshing height (MSH).

4 EXPERIMENTAL RESULTS
The experimental setup considers a cylindrical container with radius R = 50 mm and a liquid static
height h = 70 mm. The employed liquid is water, which is colored by adding dark brown powder,
in order to obtain a better contrast for the image processing analysis. Motions are performed by
an industrial robot (Stäubli RX130L) and recorded by a GoPro Hero3 camera. The trajectories are
planned so that the robot follows three geometrical paths (Fig. 3), each one of them with different
motion profiles, characterized by increasing container accelerations:

• a back-and-forth linear path (indicated as l-motion);

• an eight-shaped path (e-motion);

• a circular path, performed twice in succession (c-motion).

Table 2: MSH estimation for a 2-dimensional planar motion.

L model ηn =
4hmn

mF R

√
x2

n + y2
n (23)

NL model ηn =
ξ 2

1nhmn

mF R

√
x2

n + y2
n (24)
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Figure 3: The three paths followed by the robot during experimental validation.

In Fig. 4, the trends of the path parameter second time derivative1 σ̈ are illustrated: for every path,
all three motion profiles are showed. Note that the legend refers to the maximum of the container
acceleration norm ||S̈0||max reached during the corresponding motion.
In Fig. 5, the L and NL model predictions are compared with the results from the experimental

motions, only considering the 1st sloshing mode. A good adherence between the experiments and
the models can be appreciated for the 1-dimensional motions (Fig. 5a, 5b, 5c), and the track-
ing remains reliable also for 2-dimensional motions, especially when considering lower values of
||S̈0||max (Fig. 5d, 5g). As the value of the 2-dimensional excitation S̈0 is increased, the model
predictions still capture the trend of the real liquid MSH, although they seem to lose accuracy in
correspondence of the peaks reached by the liquid (Fig. 5e, 5f, 5h, 5i). This can be eventually
attributable to two reasons:

• the high dynamics given to the container causes a regime of strongly nonlinear motions,

1Remember that the acceleration S̈0 can be written as S̈0(σ , σ̇ , σ̈) = S′′0(σ)σ̇2 + S′0(σ)σ̈ , where ()′ = ∂ ()/∂σ
denotes the derivative with respect to the path parameter σ .

(a) l-motion. (b) e-motion. (c) c-motion.

Figure 4: The three motion profiles performed per each path.
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(a) l-motion: ||S̈0||max ≈ 5.2 m/s2. (b) l-motion: ||S̈0||max ≈ 7.4 m/s2

.
(c) l-motion: ||S̈0||max ≈ 8.1 m/s2.

(d) e-motion: ||S̈0||max ≈ 4.7 m/s2. (e) e-motion: ||S̈0||max ≈ 8.1 m/s2. (f) e-motion: ||S̈0||max ≈ 9.2 m/s2.

(g) c-motion: ||S̈0||max ≈ 5.8 m/s2. (h) c-motion: ||S̈0||max ≈ 8.9 m/s2. (i) c-motion: ||S̈0||max ≈ 9.5 m/s2.

Figure 5: Comparison between the proposed models and the experimental results.

where the liquid free surface loses the assumed shape and shows instantaneous swirly peaks,
as illustrated in Fig. 6a;

• the height of the frames that are employed for the image processing analysis, grants a greater
field of view when the liquid peak occurs on the rear wall of the container (Fig. 6b), whereas,
for a peak on the front wall (Fig. 6c), the value of the real MSH is saturated by the frame
upper limit.

For instance, the latter reason explains the discrepancy between the experiments and the prediction
models in the red areas that are highlighted in Fig. 5e, 5f, 5h, 5i.
Table 3 summarizes the obtained results by reporting the accuracy index

%εmod =
ηmax,mod−ηmax,exp

ηmax,exp
×100 (25)

where mod and exp denote the adopted model (L or NL) and the experimental results, respectively.
For all motions, |%εL| is always below the 18%, and |%εNL| never exceeds 19%, with the NL
model granting a better tracking during the whole time period. Furthermore, the positive sign of

https://doi.org/10.3311/ECCOMASMBD2021-274

87



(a) Swirly peak. (b) Back peak. (c) Front peak.

Figure 6: Snapshots from the recorded videos, showing the different peaks reached by the liquid.

Table 3: Accuracy index both for the L model and the NL model.

l-motion ||S̈0||max ≈ 5.2 m/s2 ||S̈0||max ≈ 7.4 m/s2 ||S̈0||max ≈ 8.1 m/s2

%εNL =−11.9% %εNL =−9.5% %εNL =−14.1%

%εL = 8.8% %εL = 15.8% %εL = 12.8%

e-motion ||S̈0||max ≈ 4.7 m/s2 ||S̈0||max ≈ 8.1 m/s2 ||S̈0||max ≈ 9.2 m/s2

%εNL =−2.1% %εNL =−7.5% %εNL =−9.2%

%εL = 18.3% %εL = 16.2% %εL = 17.1%

c-motion ||S̈0||max ≈ 5.8 m/s2 ||S̈0||max ≈ 8.9 m/s2 ||S̈0||max ≈ 9.5 m/s2

%εNL =−8.7% %εNL =−14.3% %εNL =−19%

%εL = 17.6% %εL = 11.6% %εL = 16.9%

%εL proves that the L model always overestimates the real SH and MSH peaks, as expected (see
Section 3.3), hence providing a more conservative estimation.

5 CONCLUSIONS AND FUTURE WORK
A novel technique for the sloshing-height estimation of a liquid inside a cylindrical container
subject to 2-dimensional planar motions was proposed, extending what was presented in [12]. The
technique is based on simple discrete mechanical models, rather than machine-learning or complex
fluidodynamical methodologies, thus granting a reliable and easy-to-compute estimation.
Experiments, considering three container paths performed by an industrial robot with different
motion profiles, were presented and the relative results were discussed. An accuracy index was
used to prove the effectiveness of the estimation, even for high values of the container acceleration
(up to 9.5 m/s2).
Future work will address the use of the proposed sloshing-height estimation for square-section
containers, adapting the formulation that was presented in Section 3. Moreover, the extension
of the technique to 3-dimensional motions will be investigated. In [6, 7] the additional term z̈0 is
treated as a quantity only affecting the n-th natural frequency ωn. This approach will be transferred
to the L and NL models and verified by experimental tests.
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ABSTRACT

High-performance sailplanes have a wide speed range. Form-variable wings with a
morphing leading edge in combination with a trailing flap for a high-speed and a low-
speed configuration have shown to increase the performance. In the present work,
a morphing wing leading edge modeled as a system constituted of a flexible exter-
nal wing skin and an actuation mechanism with rigid bodies is investigated. Flexible
multibody dynamics with the floating frame of reference formulation is applied to
analyze the behavior of the system during the motion from the high-speed configu-
ration to the low-speed configuration. The methodology includes generalized-α time
integration with Newton–Raphson iterations and efficient design sensitivity analysis.
The design sensitivities are calculated with a semi-analytical approach based on direct
differentiation. Of particular interest in the simulation are the deviations of the wing
profile from the target shape in morphed configuration and the stresses in the external
wing skin. The design variables used in the sensitivity analysis include geometric pa-
rameters, material parameters and loading parameters. The introduced methods show
high efficiency and provides reliable results. The sensitivities are visualized giving
an easy interpretation of the sensitivity values and in understanding how the design
variables can be changed to improve the design. The sensitivity computations enable
further investigations such as uncertainty analysis or gradient-based design optimiza-
tion of the system.

Keywords: flexible multibody dynamics, sensitivity analysis, generalized-α method,
morphing wing, morphing leading edge

1 INTRODUCTION
High-performance sailplanes have a large envelope of operating speeds. Fixed-geometry aircraft
are designed to be a compromise for this wide speed range. Form-variable – or morphing – wings
have shown to increase performance particularly when the leading edge of the wing is morphed in
combination with a conventional trailing-edge flap [1, 2, 3]. Morphing leading edges have been
modeled with traditional “hinged” mechanisms [2, 4] and with compliant mechanisms [3, 5]. Here,
flexible multibody dynamics including rigid and flexible bodies is applied to a hinged mechanism.
Flexible multibody simulation is a valuable tool to simulate and optimize flexible deformations and
large displacements and rotations of such a mechanism. This enables the dynamic analysis during
the motion of the mechanism in contrast to previous works in which the system was considered to
be quasi-static [2, 3, 4, 5]. In this work, we extend an in-house flexible multibody simulation code
SIMULI to accommodate the simulation and sensitivity analysis of a morphing leading edge to be
integrated in a future work in a design optimization framework.

The flexible multibody simulation approach of this work was developed and introduced in the ap-
plication to cleaning mechanisms of Tyrolean weirs, intake systems of small Alpine hydroelectric
plants [6, 7, 8]. The developed methodology includes efficient sensitivity analysis with the goal of
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Figure 1: Flow chart for solving routine for flexible multibody dynamics and integrated sensitivity
analysis

use in gradient-based design optimization of flexible mechanisms. This is developed for the sim-
ulation of a morphing leading edge concept using a flexible wing structure and a mechanism with
rigid bodies driving the deformation from the high-speed profile configuration to the low-speed
profile configuration. Special attention is paid to the computation, analysis and interpretation of
design sensitivities. Therefore, the sensitivities of both stress and geometric deviation from the tar-
get geometry with respect to the design variables are investigated. The design variables considered
here include geometric parameters, material parameters and loading parameters.

2 FLEXIBLE MULTIBODY DYNAMICS
The simulation of flexible multibody dynamics is categorized in three components as described
in [8]: governing equation, time integration and nonlinear solver. The simulation is referred as
primal analysis to differentiate from the sensitivity analysis. Fig. 1 shows the flow chart of the
method and the components are introduced here in § 2 for the primal analysis and in § 3 for the
sensitivity analysis.

2.1 Governing equation
The governing equations are given by index-1 differential–algebraic equations for the motion of
flexible multibody systems and the constraint equations of kinematic joints,

R =

[
m JT

Φ
JΦ 0

][
q̈
λ

]
−
[

Fext +Fv −d q̇− k q
Fc

]
= 0, (1)
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Figure 2: Floating frame of reference formulation (FFRF)

where R is the residual, q is the generalized position, λ are Lagrangian multipliers of the kinematic
constraints, m is the mass, d is the damping, k is the stiffness, Φ are kinematic constraints, J is
the Jacobian (i.e. the partial derivative with respect to position), Fext is the external force, Fc is the
right hand side of acceleration constraints, Fv is the quadratic velocity force and overdots represent
the first ?̇ and second ?̈ differentiation with respect to time. Single underlined symbols ? represent
vectors, double underlined symbols ? are two-dimensional matrices, triple underlined symbols are
three-dimensional and quadruple underlined symbols are four-dimensional, those without under-
lines are scalars and symbols with an overline ? are expressed in local coordinates. Specifically,
the floating frame of reference formulation (FFRF) is used to represent flexibility [9, 10]. The
generalized positions of a flexible body with FFRF is given by the position r and orientation θ of
the reference frame and flexible deformations q

f
, see fig. 2,

q =
[

rT θ T qT
f

]T
. (2)

The continuous position of a material point on a flexible body is

rP = r+AuP = r+A
(

uP,o +Sq
f

)
, (3)

where A is the transformation matrix and uP is the local position vector decomposed by the unde-
formed term uP,o and the deformed term uP, f given by the local matrix of shape functions S and the
nodal deformations q

f
. In this implementation of FFRF, a linear-elastic material model is used,

which leads to a linear stiffness matrix,

k =




0 0 0
0 0 0
0 0 k f f


 , (4)

with the finite-element stiffness matrix k f f . In contrast, the mass matrix is highly nonlinear

m =




mtt mtr mt f

mrr mr f

sym. m f f


 , (5)

=
∫

V
ρ




e B AS
BT B BT AS

sym. ST S


dV,

with the finite-element mass matrix m f f , the volume V , the density ρ , the identity matrix e and the
matrix B. The lattermost term is defined by

B =−AũPG, (6)
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with the skew-symmetric matrix of local coordinates ũP and the matrix G that relates the local
angular velocity vector ω and the velocity terms of the orientation parameters β̇ ,

ω = G β̇ . (7)

Moreover, the quadratic velocity vector is also highly nonlinear

Fv =




Fv,t
Fv,r
Fv, f


=

∫

V
ρ




−A
(

ω̃2 uP +2 ω̃ S q̇
f
− ũ

P
Ġ β̇
)

GT ũT
P

(
ω̃2 uP +2 ω̃ S q̇

f
− ũPĠ β̇

)

−ST
(

ω̃2 uP +2 ω̃ S q̇
f
− ũPĠ β̇

)


dV. (8)

The vector of external forces in FFRF is

Fext =




e
BT

ST AT


Fext. (9)

The introduced governing equation must be fulfilled at any time and needs to be solved for every
time step of the flexible multibody simulation.

2.2 Time integration
Numerical time integration is carried out with the generalized-α method originally introduced by
[11] and implemented as a predictor–corrector scheme, as described in [8, 12]. The method is
based on Newmark’s equations,

q
n+1

= q
n
+∆tq̇

n
+

(
1
2
−β

)
∆t2q̈

n
︸ ︷︷ ︸

predictorqpred

+β∆t2q̈
n+1︸ ︷︷ ︸

corrector

, (10)

q̇
n+1

= q̇
n
+(1− γ)∆tq̈

n︸ ︷︷ ︸
predictor q̇pred

+ γ∆tq̈
n+1︸ ︷︷ ︸

corrector

, (11)

and intermediate approximations for all force terms,

mq̈ =(1−αm)mn+1q̈
n+1

+αmmnq̈
n
, (12)

d q̇ =(1−α f )dn+1q̇
n+1

+α f dnq̇
n
, (13)

k q =(1−α f )kn+1q
n+1

+α f knq
n
, (14)

JT
Φ λ =(1−αm)JT

Φ,n+1λ n+1 +αmJT
Φ,nλ n, (15)

JΦ q̈ =(1−αm)JΦ,n+1q̈
n+1

+αmJΦ,nq̈
n
, (16)

Fext =(1−α f )Fext,n+1 +α f Fext,n, (17)

Fv =(1−α f )Fv,n+1 +α f Fv,n, (18)

Fc =(1−α f )Fc,n+1 +α f Fc,n. (19)

These lead to the effective system of equations of flexible multibody dynamics,
[

m
effeff JT

Φ,eff
JΦ,eff 0

][
q̈

n+1
λ n+1

]
=

[
Fa,eff
Fc,eff

]
, (20)
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where

m
eff

=(1−αm)m
n+1

+(1−α f )γ∆td
n+1

+(1−α f )β∆t2k
n+1

, (21)

JΦ,eff =(1−αm)JΦ,n+1, (22)

Fa,eff =(1−α f )Fext,n+1 +α f Fext,n +(1−α f )Fv,n+1 +α f Fv,n −αm m
n

q̈
n
+

− (1−α f )d
n+1

q̇
pred

−α f dn
q̇

n
− (1−α f )k

n+1
q

pred
−α f kn

q
n
−αmJT

Φ,nλ n, (23)

Fc,eff =(1−α f )Fc,n+1 +α f Fc,n −αmJΦ,nq̈
n
. (24)

With the new acceleration values, the updates for the position and velocity values can be performed
and the simulation continues to the next time step.

2.3 Nonlinear solver
With generalized-α time integration, the residual equations are

R1,n+1−α f
=(1−αm)m

n+1
q̈

n+1
+αmm

n
q̈

n
+(1−α f )d

n+1
q̇

n+1
+α f dn

q̇
n
+

+(1−α f )k
n+1

q
n+1

+α f kn
q

n
+(1−αm)JT

Φ,n+1λ n+1 +αmJT
Φ,nλ n+

− (1−α f )Fext,n+1 −α f Fext,n − (1−α f )Fv,n+1 −α f Fv,n, (25)

R2,n+1−α f
=(1−αm)JΦ,n+1q̈

n+1
+αmJΦ,nq̈

n
− (1−α f )Fc,n+1 −α f Fc,n. (26)

To consider the nonlinearities of the system, Newton–Raphson iterations are used here with the
following equation [

J̈ R
λ
J R

][∆q̈
∆λ

]
+R = 0, (27)

where J̈ and
λ
J are the Jacobians with respect to acceleration and Lagrangian multipliers,

J̈ R =
∂R
∂ q̈

, (28)

λ
J R =

∂R
∂λ

. (29)

The terms of the Jacobian matrix are

J̈ R1 =(1−αm)β∆t2 J m,n+1 q̈
n+1

+(1−αm)m
n+1

+

+(1−α f )β∆t2 J d,n+1 q̇
n+1

+(1−α f )γ∆td
n+1

+

+(1−α f )β∆t2 J k,n+1 q
n+1

+(1−α f )β∆t2k
n+1

+

+(1−αm)β∆t2 J T
Φ,n+1 λ n+1+

− (1−α f )
(
β∆t2 J Fext,n+1 + γ∆t J̇ Fext,n+1

)
+

− (1−α f )
(
β∆t2 J Fv,n+1 + γ∆t J̇ Fv,n+1

)
, (30)

J̈ R2 =(1−αm)β∆t2 J T
Φ,n+1 q̈

n+1
+(1−αm)JΦ,n+

− (1−α f )
(
β∆t2 J Fc,n+1 + γ∆t J̇ Fc,n+1

)
, (31)

λ
J R1 =(1−αm)JT

Φ,n+1, (32)
λ
J R2 =0. (33)

A complete derivation of the terms for the effective system and the nonlinear solver including the
design sensitivities is found in [12].
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3 DESIGN SENSITIVITY ANALYSIS
The sensitivities of the system responses with respect to certain parameters are useful in design
optimization, uncertainty analysis as well as the direct use of the sensitivities. In this work, the de-
sign sensitivity analysis is carried out with a semi-analytical approach using direct differentiation.
The differentiation must be carried through all three steps of the calculation routine: governing
equation, sensitivity analysis and nonlinear solver.

3.1 Governing equation
The direct differentiation of the primal equations results in the governing equations for the sensi-
tivity analysis,

∇R =

[
m JT

Φ
JΦ 0

][ ∇q̈
∇λ

]
−Fpseudo, (34)

where the pseudo load Fpseudo contains the partial derivatives of the system parameters with respect
to the design variables,

Fpseudo =

[
∇Fext +∇Fv −∇mq̈−∇d q̇−d ∇q̇−∇k q− k ∇q−∇JT

Φ λ
∇Fc −∇JΦ λ

]
. (35)

To limit the implementation effort in the simulation code, the partial derivatives are evaluated with
numerical forward differences, thus resulting in a semi-analytical approach.

3.2 Time integration
The time integration for the sensitivities is analogous to the time integration of the primary analysis
as a predictor–corrector scheme with Newmark’s equations and intermediate approximations [8,
12]. Therefore, the effective system of equations of the sensitivity analysis is

[
m

eff
JT

Φ,eff
JΦ,eff 0

][ ∇q̈
n+1

∇λ
n+1

]
=

[
F

a,pseudo
F

c,pseudo

]
, (36)

where the pseudo load case is

F
a,pseudo =(1−α f )∇F

ext,n+1
+α f ∇F

ext,n
+(1−α f )∇F

v,n+1
+α f ∇F

v,n
+

− (1−αm)∇m
n+1

q̈
n+1

−αm∇m
n
q̈

n
−αmm

n
∇q̈

n
+

− (1−α f )∇d
n+1

q̇
n+1

−α f ∇d
n
q̇

n
− (1−α f )d

n+1
∇q̇

pred
−α f dn

∇q̇
n
+

− (1−α f )∇k
n+1

q
n+1

−α f ∇k
n
q

n
− (1−α f )k

n+1
∇q

pred
−α f kn

∇q
n
+

− (1−αm)∇JT
Φ,n+1λ n+1 −αm∇JT

Φ,nλ n −αmJT
Φ,n∇λ

n
, (37)

F
c,pseudo =(1−α f )∇F

c,n+1
+α f ∇F

c,n
− (1−αm)∇JΦ,n+1q̈

n+1
−αm∇JΦ,nq̈

n
−αmJΦ,n∇q̈

n
.

(38)

The updates from the acceleration values to the position and velocity values are performed analo-
gously to the primal analysis.

3.3 Nonlinear solver
The Jacobian of the sensitivity analysis is that of the primary analysis [8, 12], allowing for an
efficient calculation method of the gradients,

:=
[

J̈ R
λ
J R

]

︷ ︸︸ ︷[
∇J̈∇R ∇

λ
J∇R

][∆∇q̈
∆∇λ

]
+∇R = 0, (39)
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Figure 3: Demonstration example for a morphing wing with airfoil shapes for — high-speed and
— low-speed configurations.

Figure 4: Morphing wing demonstrator based on topology optimization results in undeformed and
morphed configuration [5]

where ∇J̈ and ∇
λ
J are the Jacobians with respect to acceleration sensitivity and Lagrangian multipli-

ers sensitivity, respectively. This is the key to efficient sensitivity analysis of multibody dynamics.
Without this simplification, the Jacobian of the sensitivity analysis is four-dimensional, requiring
excessive memory usage. This is avoided by recognizing that these Jacobians are equivalent to
those from the primary analysis and therefore avoiding any further calculation.

4 MORPHING WING MODEL
The design of the target geometry of the morphing wing sailplane in undeformed and morphed con-
figuration is presented in [1, 13] and shown in fig. 3. Airfoil shapes are designed using a numerical
optimization approach considering aerodynamic lift and drag [14, 15]. A morphing concept shows
a significant performance advantage over conventional sailplanes with a camber changing flap. In
earlier work [5], the morphing actuation is achieved using compliant mechanisms. A concept with
a stack of six individual compliant mechanisms is shown in fig. 4.

Flexible multibody dynamics with FFRF is applied to the planar model of the system shown in
fig. 5a. A conventional hinged mechanism is investigated for actuation. The flexible outer shell,
i.e. wing skin, (body 1) is modeled with planar Euler–Bernoulli beams considering a section of
the wing profile with the length of 1000mm and a wall thickness of 2mm. The mesh consists of
31 nodes and 30 elements. The upper end of the leading edge wing profile (point F) is fixed in all
three degrees of freedom, i.e. x, y and θ . The lower end of the leading edge wing profile (point G)
is fixed in y and θ , allowing for free motion in x. The actuation mechanism consists of four rigid
bodies 2, 3, 4 and 5. These are connected by five revolute joints in A, B, C, D and E and a rigid
joint between the bodies 2 and 4 in B. The mechanism is actuated by a torque starting from zero
and going to a maximum value of 10Nm that is applied to body 2 on point A. Aluminum is used
as material with a density of 2.7×10−9 t/mm3, a Young modulus of 70000MPa and a Poisson ratio
of 0.35 [−]. Fig. 5b shows the motion of the multibody system from the high-speed configuration
(undeformed) to the low-speed configuration (morphed).

The key element for a proper function of the morphing leading edge is the design of the actuation
mechanism considering the interaction with the flexible wing skin. It is important to approximate
the target wing profile in morphed configuration as closely as possible. Another important aspect
is to consider the material limits. A simulation with flexible multibody dynamics is performed
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(a) Model of mechanism and wing skin (b) Motion of rigid mechanism and deformable wing
skin

Figure 5: Flexible multibody system of the morphing wing leading edge

Figure 6: Stress σ [MPa] during the motion of the mechanism

to assess both deformed shape as well as the stresses. Fig. 6 shows the stress distribution in the
wing skin during the motion of the mechanism from the undeformed configuration to the morphed
configuration. The highest values are found in morphed configuration and near to the constraints
of the wing skin (points F and G). The maximum stress of all elements and all time steps is
approximated with the Kreisselmeier–Steinhauser function [16] to obtain a differentiable function

σmax = FKS
(
σ i, j) , i = 1, . . . ,nt , j = 1, . . . ,ne, (40)

where FKS is the Kreisselmeier–Steinhauser function, σ is the stress, nt is the number of time
steps and ne is the number of elements. Here, the approximated maximum stress is given by
149.96MPa.

Fig. 7a shows the external wing profile in the undeformed configuration, the target morphed con-
figuration and the simulated morphed configuration. It is possible to observe an error between the
simulated morphed configuration and the target morphed configuration. This error is given by the
distance between the simulated node positions and the target profile in morphed configuration,

ek =

√(
xk

s − xk
t
)2

+
(
yk

s − yk
t
)2
, k = 1, . . . ,nN , (41)

where xk
s and yk

s are the simulated node coordinates, xk
t and yk

t are the target node coordinates and
nN is the number of nodes. Fig. 7b shows the error value of the morphed configuration. The largest
error is 1.185mm and is located behind the tip on the lower side of the wing profile.

The deviation from the target shape as a global consideration is expressed via root-mean-square
error,

erms =

√
1

nN

nN

∑
k=1

e2
k , (42)

and is given by 0.6348mm. The deviations from the target wing profile with a maximum value
of 1.185mm and a root-mean-square error of 0.6348mm are to acceptable accuracy, especially
considering the wing width of 550mm, the wing height of 67.5mm and the width of the leading
edge of 137.5mm. Nevertheless, it is important to analyze and minimize the deviations, since the
shape of the wing profile is crucial for the aerodynamics and the performance of sailplanes.
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(a) — undeformed configuration — target config-
uration — simulated configuration

(b) Error in morphed configuration e [mm]

Figure 7: Shape of the external wing profile

To understand how the stress distribution and the deviation from the target profile are affected by
the design variables, a sensitivity analysis is performed. The sensitivity analysis is performed with
respect to the design variables, which include the thickness of the external wing skin tw, the value
of the torque that is applied to actuate the mechanism Mt , the coordinates xA and yA of the point
where the torque is applied (point A) and the Young’s modulus E. The sensitivities are computed
as shown in § 3 and the chain rule is applied to all operations.

Fig. 8 shows the stress sensitivities during the motion of the system1. In terms of simulation time,
the highest sensitivity values are always found at the end of the motion in morphed configuration
of the wing profile. In terms of position on the wing profile, the highest sensitivity values with
respect to the x-coordinate xA of the application point of the torque are found on the tip of the wing
profile and on the upper connection point between the actuation mechanism and the external wing
profile (point C), while for all other design variables, the highest sensitivity values are found near
to the constraints of the wing profile (points F and G). In contrast to the primal analysis, where the
highest stress values are found on the lower constraint (point G), the highest values of the stress
sensitivities are on the upper constraint (point F). A comparison between fig. 6 and fig. 8 allows
to conclude that the stress σ can be reduced by increasing the thickness of the external wing skin
tw, the x-coordinate xA of the application point of the torque and the Young’s modulus E or by
reducing the actuation torque Mt and the y-coordinate yA of the application point of the torque.

Fig. 8 shows the sensitivities of the error in morphed configuration. Here it is possible to observe
that especially in the nose of the leading edge, the sensitivities on the lower side have the opposite
sign from the sensitivities on the upper side of the wing profile. Comparing the error values on
fig. 7b with the error sensitivities on fig. 9 allows to predict in which direction the design variables
should be modified in order to reduce the error. Since the highest values of the error are on the
lower side of the wing skin, these can be reduced by increasing the thickness of the external wing
skin tw, the x-coordinate xA of the application point of the torque and the Young’s modulus E or by
reducing the actuation torque Mt and the y-coordinate yA of the application point of the torque.

Tab. 1 gives the sensitivity values of the maximum stress and the root-mean-square error. These
have been computed by the differentiation of the Kreisselmeier–Steinhauser function and the func-
tion of the root-mean-square error. Comparing the values from tab. 1 with the values on fig. 8 and
fig. 9, the results show great consistency. In the case of the maximum stress, the maximum value is
found on the lower end of the wing profile leading edge (point G). The sensitivity on this position
of fig. 8 corresponds exactly to the approximated values reported in tab. 1. The same comparison
is not possible for the root-mean-square error because all nodes are considered by the function, but
the values from fig. 9 and tab. 1 show the same order of magnitude.

The results from the semi-analytical sensitivity analysis are validated with numerical sensitivity
analysis and the values coincide. Table 2 shows the computation time for both methods2. This

1Units of sensitivity results are not reduced to demonstrate the physical and engineering meaning of these values.
2Computations are performed on a PC with Intel Core i7-8700 CPU @ 3.20GHz × 12 and 32 GB RAM.
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(a) Sensitivity w.r.t. thickness ∂σ
∂ tw

[MPa/mm] (b) Sensitivity w.r.t. torque ∂σ
∂Mt

[MPa/N·mm]

(c) Sensitivity w.r.t. actuation point in x ∂σ
∂xa

[MPa/mm] (d) Sensitivity w.r.t. actuation point in y ∂σ
∂ya

[MPa/mm]

(e) Sensitivity w.r.t. Young’s modulus ∂σ
∂E [MPa/MPa]

Figure 8: Design sensitivities of the stress σ

(a) Sensitivity w.r.t. thickness ∂e
∂ tw

[mm/mm] (b) Sensitivity w.r.t. torque ∂e
∂Mt

[mm/N·mm]

(c) Sensitivity w.r.t. actuation point in x ∂e
∂xa

[mm/mm] (d) Sensitivity w.r.t. actuation point in y ∂e
∂ya

[mm/mm]

(e) Sensitivity w.r.t. Young’s modulus ∂e
∂E [mm/MPa]

Figure 9: Design sensitivities of the error e in morphed configuration
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Table 1: Design sensitivities of the maximum stress σmax and the root-mean-square error erms

w.r.t. to design variables
·/∂ tw [·/mm] ·/∂Mt [·/N·mm] ·/∂xA [·/mm] /∂yA [·/mm] ·/∂E [·/MPa]

response
∂σmax/· [MPa/·] −324.64 0.02664 −0.7800 11.86 −0.001664
∂erms/· [mm/·] −5.544 3.695 ·10−4 −0.01440 0.1668 −5.280 ·10−5

Table 2: Computational effort of semi-analytical and numerical sensitivity analysis

method computation time [min : s]

semi-analytical sensitivity analysis 03 : 32
numerical sensitivity analysis 14 : 48

comparison shows the high efficiency of the implemented semi-analytical sensitivity approach.
The computational effort of the numerical sensitivity analysis is given by the sum of nx+1 primal
evaluations and is given here by 6 evaluations with a mean evaluation time of 02 : 28 [min : s]. The
computational effort of a system evaluation with the semi-analytical sensitivity analysis is less then
twice (1.43×) the computational effort of one primal evaluation due to the simplification shown in
§ 3.3.

5 CONCLUSION
The present work introduces an efficient sensitivity analysis of flexible multibody dynamics with
a semi-analytic direct differentiation approach of generalized-α time integration with Newton–
Raphson iterations for a morphing wing concept. This concept for a morphing wing leading edge
with a trailing flap for a high-speed and a low-speed configuration increases the performance in
the wide speed range of a high-performance sailplane. The morphing wing leading edge models
the external wing skin with flexible elements, while the actuation mechanism is modeled with
rigid bodies. Special interest was devoted to the deviation error from the target shape in mor-
phed configuration and the stress values in the wing skin in addition to both of these sensitivities.
Semi-analytical sensitivity analysis is utilized for its computational efficiency and accuracy. The
calculated design sensitivities include those with respect to geometric properties, material prop-
erties and the position and torque of the actuator. This sensitivity analysis is the basis for future
uncertainty analysis and gradient-based design optimization of the morphing wing and its actua-
tion mechanism. The maximum stress is considered as material limit, though the consideration of
the fatigue (including sensitivities) would be of great practical use. This work is an integral part of
the integration of a design optimization framework to optimally design the actuation mechanism
and geometry of a morphing wing leading edge.
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ABSTRACT

This contribution deals with the feedforward control of rigid bodies actuated through
elastic ropes. After introducing a method which enables a stable inversion process of
the dynamics of a geometrically exact rope, a strategy to solve the cooperative control
of a rigid body through multiple ropes is presented.

Keywords: Flexible multibody system, Cooperative control, Inverse dynamics

1 INTRODUCTION
The inverse dynamics of flexible mechanical systems is concerned with searching forces acting on
this system such that a finite number of selected points of this system follow a prescribed motion.
One subclass of such systems are ropes for large elastic deformations which can be seen as a one-
dimensional continuum. Here the aim is to find a force which acts at one end of the rope, such that
the other end follows a prescribed trajectory (see Fig. 2). In this connection, the end of the rope
might be attached to a mass point or connected to a rigid body.

fk(t)

{di}

x̄(t)

{ei}

g

sk

B

γ(t)

nk
c(t)

Figure 1. Cooperative transport of a rigid body through k ∈ N elastic ropes only actuated
through the forces fk(t) at sk = 0 such that the prescribed motion of the rigid body is realized

After introducing a geometrically exact model for ropes in Section 2, a space-time finite element
method based on a simultaneous space-time discretization of the problem at hand is established
which solves the inverse dynamics problem (see [1, 2]). In Section 3, first the rigid body is in-
troduced as a Cosserat point subjected to geometric constraints. Subsequently, after the inverse
dynamics of the rigid body has been discussed, a strategy to solve the cooperative control problem
consisting of the rigid body controlled through several elastic ropes undergoing large deformations
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is presented (see Fig. 1). In particular, the cascade-like solution strategy of the inverse multibody
system is addressed. The structure of the equations of motion of a multibody system comprised of
geometrically exact ropes and rigid bodies is outlined in Section 4. A representative numerical ex-
ample of the inverse dynamics problem under consideration is presented in Section 5. Eventually,
conclusions are drawn in Section 6.

2 GEOMETRICALLY EXACT ROPES
The motion of elastic ropes with mass-density ρ , length L, cross sectional area A and Young’s
modulus E (see Fig. 2) undergoing large deformations can be described in terms of the arc-length
s ∈ S = [0,L] ⊂ R by quasi-linear hyperbolic partial differential equations. For simplicity and
without loss of generality, in a stress-free reference configuration, the length of the rope and the
cross sectional area is set to L0 = 1 and A0 = 1 respectively. For this, an arbitrary configuration
of the rope can be described by the function r(s, t) : S×T = Ω ⊂ R2 7→ Rα for all α ∈ {1,2,3}
and t ∈ T = [0,∞). Following [3] the governing equations of motion can be established as follows.
With the normal force in the rope n(s, t) : Ω 7→ Rα and the body-forces b(s, t) : Ω 7→ Rα , balance
of linear momentum of an infinitely small piece of rope yields:

∂sn(s, t)+b(s, t) = ρ∂ 2
t r (1)

Strings are per definition perfectly flexible e.g. normal forces are strictly tangential to the line of
centroids

∂sr(s, t)×n(s, t) = 0 (2)

Introducing the stretch

ν(s, t) = ‖∂sr(s, t)‖ (3)

then there exists a N(s, t) : Ω 7→ R such that

n(s, t) = N(s, t)ν−1∂sr (4)

After assuming the following constitutive relation

N(s, t) =
E
2
(ν −ν−1) (5)

and introducing the coefficients

A = ρ, B = N(s, t)ν−1, C = b(s, t)

the motion of elastic ropes can be described by the following partial differential equation:

A(r,s, t)∂ 2
t r(s, t)−∂s(B(r,s, t)∂sr(s, t)) =C(r,s, t) ∀ (s, t) ∈ Ω (6)

Note, that due to the quasi-linearity of the problem at hand, the coefficients A ∈ R , B ∈ R and
C ∈ Rα may depend on the space and time variables as well as on the solution r(s, t) : S×T =
Ω ⊂ R2 7→ Rα for time t ∈ T = [0,∞). To solve the PDE at hand uniquely the following initial

r(s,0) = r0(s), ∂tr(s,0) = v0(s) ∀ s ∈ S (7)

and boundary conditions

B∂sr(0, t) = f (t), B∂sr(1, t) = nc(t), r(1, t) = γ(t) ∀ t ∈ T (8)

need to be defined. Herein f (t) : T 7→ Rα is the searched actuating force at s = 0 such that the
rope at s = 1 follows the prescribed trajectory (r(1, t) = γ(t). And nc(t) : T 7→ Rα is the contact
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force at s = 1. If a mass point mT is attached to the rope at s = 1, the contact force can be directly
computed from the prescribed trajectory of the rope at s = 1, which coincides with the trajectory
of the mass point, via

nc(t) = mT (∂ 2
t γ(t)+gez) (9)

Now, the initial boundary value problem constituting the control problem at hand can be solved
by applying appropriate numerical procedures. After addressing issues arising from the common
semi-discrete approach, where the initial boundary problem at hand is solved by applying the finite
element method and subsequently integrating the resulting ordinary differential equation subjected
to the given servo-constraint in time by appropriate time-stepping schemes, a space-time finite
element method based on a simultaneous space-time discretization is proposed.

b

{ei}

f (t)

E,ρ,A,L

γ(t)

g

r

s

mT

Figure 2. Illustration of the elastic rope for large deformations only actuated by f (t) at s = 0
such that the rope at s = 1 follows the prescribed trajectory γ(t)

2.1 Semi-discrete equations of motion
As mentioned above, one common way of solving mechanical problems which are leading to hy-
perbolic problems is to transform the partial differential equation at hand into a system of ordinary
differential equations. Therefore, equation (6) is multiplied with a sufficiently smooth test function
and integrated over the spatial domain s:

∫

S
w ·∂s(B∂sr)ds+

∫

S
w ·C ds =

∫

S
w ·A∂ 2

t r ds

Integrating the first integral on the left side by parts
∫

S
w ·∂s(B∂sr)ds = [w · (B∂sr)]S −

∫

S
∂swB∂sr ds

leads together with the boundary conditions

B∂sr(s = 0) = f (t), B∂sr(s = 1) = 0

to a weak formulation of the problem at hand:
∫

S
w ·A∂ 2

t r ds+
∫

S
∂swB∂sr ds =

∫

S
w ·C ds+[w · (B∂sr)]S
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Approximation of the test and trial functions with piecewise continuous Lagrangian polynomials
Li:

rh(s) =
p+1

∑
j=1

L j(s)r j ; wh(s) =
p+1

∑
i=1

Li(s)wi

yields with the unknown variables

q̂ =




r1
...

rp+1


 (10)

the following semi-discrete equations of motion:

M̂q̂+ F̂ int = N̂1 − N̂0 + Ĝ (11)

with the components of the quantities given in (11)

M̂i j =
∫

S
Li(s)AhL j(s)ds (12)

F̂ int
i =

∫

S
∂sLi(s)Bh∂sL j(s)ds∂sr j (13)

Ĝi =
∫

S
Li(s)Ch ds (14)

N̂1
i = δi,p+1nc(t) (15)

N̂0
i = δi,1 f (t) (16)

By introducing the control condition r(s = 1, t)− γ(t) = 0, the control problem can be formulated
in terms of the resulting differential algebraic system of equations (DAE). Unfortunately, the dif-
ferentiation index of the DAE at hand as well as the demands on the differentiability of the given
trajectory depend on the spatial discretisation (cf. [4] and [5]). This significantly restricts the ap-
plicability of the semi-discrete approach. Therefore a method based on the characteristics of the
PDE and a space-time finite element method has been established. Both methods are searching for
the solution of the control problem at hand in space and time simultaneously (see [1] and [2] for
more details). In this contribution, the space time finite element method is used for computing the
inverse dynamics of the problem at hand.

2.2 Space-time finite element method
Due to the highly restrictive applicability of solving the control problem at hand sequentially
in time, the problem will now be solved simultaneously in space and time. Therefore a space-
time finite element method will be presented in the following (cf.[6],[7],[8]). By introducing the
velocity v(s, t)= ∂tr(s, t) the underlying partial differential equation at hand (6) can be transformed
into the following system of equations:

∂tr− v = 0

A∂tv−∂s(B∂sr) =C
(17)

Multiplying each equation in (17) with sufficiently smooth test functions w1(s, t) and w2(s, t) and
integrating over the space-time domain Ω = S×T yields the following weak formulation:

∫

Ω
w1 · (∂tr− v)dΩ = 0 (18)

∫

Ω
w2 · (A∂tv−∂s (B∂sr))dΩ =

∫

Ω
w2 ·C dΩ (19)
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Integrating the second term in (19) by parts
∫

Ω
w2 ·∂s(B∂sr)dΩ =

∫

T
[w2 ·B∂sr]

1
s=0 dt −

∫

Ω
∂sw2 ·B∂sr dΩ (20)

the following equation for (19) can be established:
∫

Ω
w2 ·A∂tvdΩ−

∫

T
[w2 ·B∂sr]

1
s=0 d t +

∫

Ω
∂sw2 ·B∂sr dΩ =

∫

Ω
w2 ·C dΩ (21)

Additionally the servo-constraint r(s = 1, t) = γ(t) can be demanded weakly on the boundary
∂Ωγ = {1}×T

∫

∂Ωγ
w3(t) · (r(1, t)− γ(t)) dt = 0 (22)

The task is now to find the unknown functions

r(s, t) ∈V1 = {r : Ω 7→ Rα |r(∂Ω0) = r0}
v(s, t) ∈V2 = {v : Ω 7→ Rα |v(∂Ω0) = v0}

f (t) ∈V3 =
{

f : ∂Ω f 7→ Rα | f (∂Ωγ ∩∂Ω0) = f0
}

such that for arbitrary but sufficiently smooth test functions

w1(s, t),w2(s, t) ∈W1 = {w1,w2 : Ω 7→ Rα |w1(∂Ω0) = 0,w2(∂Ω0) = 0}
w3(t) ∈W2 =

{
w3 : ∂Ωγ 7→ Rα |w3(∂Ωγ ∩∂Ω0) = 0

}

the equations (18), (21) and (22) are satisfied together with the Neumann boundary conditions

B∂sr(∂Ω f ) = f (t) and B∂sr(∂Ωγ) = nc(t) t ∈ T

and the Dirichlet boundary conditions

r(∂Ω0) = r0(s) and ∂tr(∂Ω0) = v0(s) s ∈ S

The weak formulation consisting of (18), (21) and (22) subjected to the given Neumann and Dirich-
let boundary conditions can then be solved numerically using the finite element method based on
a piecewise continuous approximation.

Ω

∂Ω0

∂Ω f ∂Ωγ

s

t

Figure 3. Space-Time domain Ω= S×T with the boundaries ∂Ω0 = S×{0}, ∂Ω f = {0}×T
and ∂Ωγ = {1}×T
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3 RIGID BODY
When considering general rigid bodies, in principle the same strategy as for the attached mass point
can be applied. The actuating forces needed to achieve the desired motion of the rigid body can
be calculated directly from the governing equations of motion. These forces can then be inserted
into the Neumann boundary condition of the control problem (8). In this contribution a Cosserat
point subjected to geometric constraints is used to describe the motion of a rigid body with density
ρ0 : B0 7→ R and total mass M̄ =

∫
B0

ρ0 dV (see [9] for more details). Accordingly, the equations
of motion can be written as

M̄∂ 2
t x̄− fext −G = 0

Ei j∂ 2
t d j − f i

ext +Λi jd j = 0

gc(di) = di ·d j −δi j = 0

(23)

Herein G = M̄gez is the gravitational force and Ei j are the components of the referential Euler
tensor which is closely related to the classical inertia tensor of rigid body dynamics. Furthermore,
fext is the resultant external force and

f i
ext = Xk

i nk
c (24)

are the external director forces (Fig. 4). This holds for a discrete actuation of the rigid body. Note
that by introducing the matrix

H jk =




I
Xk

1 I
Xk

2 I
Xk

3 I


 (25)

containing the information of the geometric position of the contact points the following linear
relation between the external (director) forces f̄ (t) =

[
fext f i

ext
]T and the contact forces nk

c

f̄ (t) = Hnk
c(t) (26)

holds. The geometric constraints (23)3 are enforced by the Lagrange multipliers Λi j. To force the
rigid body at hand to follow a prescribed motion γ(t) =

[
γx̄ γdi

]T additionally to the holonomic
constraints (23)3, the following control constraints

gs = q̄− γ(t) = 0 (27)

are introduced. In (27) the motion of the rigid body, which is fully described by the directors
di : T 7→ R3 and the position of the centre of gravity x̄ : T 7→ R3 is contained in q̄ =

[
x̄ di

]T . The
servo-constraints (27) of course must not violate the holonomic constraints (23)3. The differential
part of the DAE at hand, consisting of (23)1 and (23)2, together with the control constraint (27)
yield an algebraic equation for the external (director) force f̄ (t) conjugate to q given by

f̄ (t) = D∂ 2
t γ(t)+Fγ(t)− Ḡ (28)

with

D =

[
M 0
0 Ei j

]
, F =

[
0 0
0 Λi j

]
, Ḡ =

[
G
0

]
(29)

where G is the gravitational force. After f̄ (t) has been computed, the k ∈ N contact forces nk
c(t)

for the k ropes at sk = 1 can be easily computed by knowing the position of the contact point of
the rope at the rigid body through the following linear relation:

nk
c(t) = Qkl f̄l(t) (30)
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Herein Qkl are the components of the inverse of the positive definite matrix H ∈R4α,4α introduced
in (25). Once the forces nk(t) have been calculated, each rope can be solved separately by in-
serting the forces into the corresponding boundary condition of the quasi-linear hyperbolic partial
differential equation established in Section 2. Before the cascade-like approach outlined above
is investigated numerically in Section 5, the multibody system at hand consisting of a rigid body
attached to a geometrically exact rope is developed in the next Section. The numerical results of
the inverse calculation can then be verified using this model.

X1
X2

X3

{di}

nk(t)

Figure 4. Force nk acting on a rigid body at point P = x̄+Xidi

Remark 3.1 (Lagrange multipliers). The actuating forces depend on the Lagrange multipliers
Λi j and hence a unique solution for the actuation of the rigid body requires the six independent
components λ̄k for k ∈ {1, · · · ,6} ⊂ N of Λi j to be partly specified.

λ̄k = γλk

In essence, this amounts to partly specifying the stresses within the rigid body (cf.[10]).

4 MULTIBODY SYSTEM
When considering flexible multibody systems consisting of a rigid body connected to a rope, the
motion can be described by the semi-discrete equation of motion of the rope (11) together with
the differential algebraic equation (23) governing the motion of the rigid body depending on the
unknown spatial discrete variables q =

[
q̂T q̄T

]T .

R(∂ 2
t q,q, λ̄ , t) =

[
M̂∂ 2

t q̂+ f int
i − Ĝ

D∂ 2
t q̄+Fq̄− Ḡ

]

subjected to the following geometric contact constraint

gk = rp+1 − (x̄+Xidi) = 0 (31)

by the following semi-explicit differential algebraic equation:

R(∂ 2
t q,q, t)− (∂qgk(q))T λ = 0

gc = 0

gk = 0

Note that the Lagrange multipliers λ : T 7→ Rα can be identified with the contact force acting
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between the rope and the rigid body. Compare therefore (11) and (23) with

λ∂qg(q) =




0
...
λ
−λ
−λX1
−λX2
−λX3




(32)

To verify the numerical implementation of the procedure outlined in this section, an example for
the forward dynamics of a rigid body suspended by a flexible rope is considered. In particular,
snapshots of a free oscillation of a rigid cube with edge length a and total mass M̄, which is
attached to a flexible rope, are shown in Figure 5. For the time t = 0.0 s the initial translational
velocity v0 =

[
2 −5 0

]T is presupposed.

t = 0.0 s

t = 1.5 s

t = 3.0 s

t = 4.5 s

t = 6.0 s

t = 7.5 s

t = 9.0 s

ei

Figure 5. Free oscillation of a rigid cube with edge lenth a = 2 and total mass M̄ = 0.1
connected to a flexible rope with ρ = 1 and E = 2

5 NUMERICAL EXAMPLE
To verify the presented approach to the inverse dynamics problem under consideration, the fol-
lowing scenario is given. A rigid cube with edge length a = 2 and mass M̄ = 1 is supposed to
accomplish a rest-to-rest maneuver. For this a translation of the cube from point P0 = (0,0,0)
to point Pf = (2,2,2) along a straight line together with a simultaneous rotation of π around the
z-axis is planned. The maneuver is intended to start at t0 = 1.0 s and end at t f = 9.0 s. The motion
of the rigid body described in terms of a Cosserat point subjected to geometric constraints can then
be prescribed together with

ϕ =−π
2
(cos(

π
2
(sinθ +1))−1) , θ = π(

t − t0
t0 − t f

− 1
2
) (33)
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through the following trajectory:

γrb =




0
0
0
1
0
0
0
1
0
0
0
1




∀ t < t0, γrb =




−cosϕ +1
−cosϕ +1
−cosϕ +1

cosϕ
sinϕ

0
−sinϕ
cosϕ

0
0
0
1




∀ t ∈ Tm = [t0, t f ], γrb =




2
2
2
−1
0
0
0
−1
0
0
0
1




∀ t > t f (34)

Thereby, four elastic ropes with mass density ρ = 1 and Young’s modulus E = 1, are used to
actuate the rigid body for which the motion is prescribed.
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Figure 6. Components of the contact forces nk(t) such that the rigid body follows the pre-
scribed translation of the rigid body from point P0 = (0,0,0) to point Pf = (2,2,2) accompa-
nied by a simultaneous rotation π
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Regarding the k predefined contact points for i ∈ {1,2,3}
Pk = x̄+Xk

i di

and following Section 3 the contact forces needed to achieve the desired motion can then be com-
puted using (30) with

H =




I I I I
I −I I −I
I −I −I I
−I I I I




where I ∈ Rα,α is the identity matrix. Note that, following Remark 3.1, the Lagrange multipliers
cannot be left undefined. For the given maneuver, a uniaxial tension within the rigid body is
choosen:

λ̄ =
[
0 0 M̄g 0 0 0

]T (35)

In Figure 6 components of the k contact forces are shown. Subsequently, using the methods
presented in Section 2 and Section 3, the forces acting on the upper end of the k ropes at sk = 0
such that the rigid body at hand follows the prescribed trajectory, can be calculated. The numerical
solution is shown in Figure 7.
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Figure 7. Components of the actuating forces fk acting on the upper end of the ropes at sk = 0
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To verify the outlined method, the forces fk(t) can be inserted into the flexible multibody system
presented in Section 4. In Figure 8 snapshots of a forward simulation of the flexible multibody
system at hand actuated with the forces fk(t) acting at the upper ends of the k ropes computed
numerically using the approach presented above are shown.

t = 0.0s

t = 3.0s

t = 4.0s

t = 5.0s

t = 6.0s

t = 7.0s

t = 10.0s

ei

Figure 8. Snapshots of a rigid cube with edge length a = 2 and total mass M̄ = 1 actuated
through four flexible ropes with ρ = 1 and E = 2 following a straight line from P0 = (0,0,0)
to Pf = (2,2,2) while rotating simultaneously by the prescribed angle π

6 CONCLUSIONS
In this contribution the focus is laid on the cooperative control of a rigid body through flexible
ropes. For this, the rigid body is supposed to follow any prescribed motion and an actuation is
only achieved through flexible ropes attached to the rigid body at hand. Due to the differential
flatness of the rope and the rigid body, the determination of the searched actuating forces, which
are only allowed to act upon the upper ends of the attached ropes, can be carried out in a cascade-
like manner. For this purpose, the rigid body is modelled as a Cosserat point under geometric
constraints. By knowing the given motion of the body, the contact forces acting between the ropes
and the rigid body can then be calculated directly from the resulting differential algebraic equation
describing the motion of the body without integration. Now the task is to find the actuating force
at the upper end of each rope, such that the geometric and static boundary conditions together with
the partial differential equation governing the motion of the rope are fulfilled. The geometric and
static boundary conditions are given by the prescribed motion of the lower end of the rope and
the contact force, respectively. Common approaches, like the semi-discrete approach in which the
underlying initial boundary value problem is discretised in space by applying appropriate methods
and subsequently integrated in time, are not feasible for the control problem of flexible structures
considered here. Therefore, a space-time finite element method is proposed in this contribution.
This novel approach solves the control problem simultaneously in space and time and yields the
actuating forces at the upper end of the ropes. Due to the cascade-like approach, the inverse
computations of the rope-dynamics can be solved in parallel. The results of the inverse calculation
of the actuating forces can then be verified by a forward simulation of a model of the considered
flexible multibody system excited through the computed actuating forces. For this a direct model of
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the considered flexible multibody system is established in this contribution. This paper concludes
by presenting a represenative numerical example.
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ABSTRACT

Detailed impact simulations in flexible multibody systems can be simulated based
on reduced isogeometric analysis (IGA) models. A precise simulation of an impact
requires a high element resolution in the contact area. Usually, global refinement
methods are used, which are easy to implement. However, the literature proposes the
use of hierarchical refinement to refine locally. The local refinement generates fewer
countable degrees of freedom compared to an equivalent global refinement. Numerous
application areas can be found in the literature, such as contact simulations, where the
computational effort is reduced by local refinement. This work tests the hierarchical
refinement in the context of an impact simulation with the floating frame of reference
formulation. In the application example, the impact of two elastic spheres is simulated
and compared to an analytic solution. The focus is set on calculation time and accuracy
compared to globally refined reference models.

Keywords: impact simulation, IGA, floating frame of reference formulation.

1 INTRODUCTION
In impact problems within flexible multibody systems, the rigid body motions before and after
impact are often large while only small elastic deformations occur during impact. This is the
case for relatively stiff materials. Flexible bodies made of steel or aluminum are considered
stiff, which allows the application of the floating frame of reference formulation [1] in this work.
The use of the floating frame of reference formulation requires global shape functions Φ of the
flexible bodies to model the body flexibility. The global shape functions can be obtained with
the finite element method [2] and a reduction method, such as the Craig-Bampton method [3].
When simulating flexible multibody systems and impacts, the bodies are usually meshed with
isoparametric elements. A major drawback of isoparametric elements is the discretization of the
geometry. Since the calculation of the contact force is based on the geometry of the finite element
model, errors can occur. An alternative to isoparametric elements is the IGA, whose use is motivated
by two advantages. First, the use of non-uniform rational basis splines (NURBS) as local shape
functions of the elements allows an exact representation of the body geometry. Second, high modes
of flexible bodies are represented more accurately compared to isoparametric elements [4]. The
latter advantage is useful for the floating frame of reference formulation introduced in the later
course of this work. These advantages are bought by increased computational costs in the evaluation
of the nonlinear local shape functions compared to linear shape functions of isoparametric elements.

An accurate impact simulation, which captures the local deformation, requires a high element
resolution in the contact area, as this is where the largest elastic deformations and stresses occur.
However, the refinement methods usually used in IGA only allow global refinement. When the
number of elements is increased in the contact area, additional elements and control points are
created over the entire body, as exemplified on the left hand side in Fig. 1. The control points
represent the degrees of freedom in the IGA, thus the global refinement greatly increases the number
of equations in the finite element model. One method for local refinement is a hierarchical approach,
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Figure 1: Example of a semicircle that should be refined in the contact area.

where subordinate levels are introduced, as displayed in Fig. 1. The hierarchical refinement is widely
used in the literature. It is applied in elementary fluid and structural analysis [5], heat conduction
problems [6], topology optimization [7] and contact simulations [8]. The aforementioned literature
summarizes that the computational effort can be reduced due to the smaller number of degrees of
freedom compared to a global refinement. These examples are mostly from statics, in this work
hierarchical refinement is applied in a dynamic problem. The aim of this work is to show whether
the computational effort is reduced when simulating the impact of hierarchically refined bodies in
the context of the floating frame of reference formulation.

This work is organized in the following way. Initially, the concept of the floating frame of reference
formulation is briefly summarized in Section 2. Section 3 introduces the concepts of the IGA, the
hierarchical refinement, and the extraction of the global shape functions. The contact algorithm is
briefly explained in Section 4. The following Section 5 is a detailed discussion of an application
example, and the results are summarized in Section 6.

2 FLOATING FRAME OF REFERENCE FORMULATION
When simulating flexible multibody systems, the floating frame of reference formulation is a
well-established approach [1]. Large nonlinear rigid body motion of the body frame KR can be
described within the inertial frame KI. In this work, a Buckens-frame [1] is utilized as floating
frame. Provided that the body deformations remain small and linear elastic, they can be described
in the body frame KR. Using the global shape functions Φ and the nq elastic coordinates qe, the
elastic deformation can be approximated. The equations of motion of a single flexible body are
given by 


mE 0 Cᵀ

t
0 I Cᵀ

r

Ct Cr M e




︸ ︷︷ ︸
M




Rv̇IR
Rω̇IR
q̈e




︸ ︷︷ ︸
żII

= hp +hd +hb−hω −he︸ ︷︷ ︸
ha

, (1)

where RvIR is the velocity of the rigid body motion from the inertial frame to the reference frame
and RωIR is the angular velocity. In Eq. (1), the mass of the body is denoted by m, the translational
coupling matrix by Ct, the rotational coupling matrix by Cr and the mass moment of inertia by I .
The right hand side vector ha is composed of the vector of surface forces hp, the discrete forces hd,
the body forces hb, and the inertial forces hω . The mass matrixM e of a linear elastic body as well
as the stiffnessKe and damping matrixDe needed to compute the inner forces he are introduced
in a later section. Contact forces are considered in the discrete forces hd. The standard input
data (SID), a well-known standard in providing elastic data in the context of the floating frame of
reference formulation [1], is used to assemble the equations of motion (1). For the formulation
of the equations of motion and the transient analysis, the MATLAB toolbox DYNMANTO [9] is
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used. The resulting equations of motion are solved by the ode15s MATLAB solver with numerical
differentiation formulas (NDF).

3 GLOBAL SHAPE FUNCTIONS FROM IGA
Determining the global shape functions Φ is a key issue in using the floating frame of reference
formulation. A general way to determine the global shape functions is to generate a finite element
model of the flexible body and then identify the global shape functions from the finite element
model using model reduction techniques. This section briefly presents the idea of the IGA and the
procedure to obtain the global shape functions from an IGA model. A more detailed introduction to
the IGA can be found in [4]. Additionally, the concept of hierarchical refinement and a methodology
to locally refine isogeometric models are introduced.

3.1 Basis Splines
The IGA consists of three spaces: The physical space, the parameter space, and the index space.
The first two spaces are essential for understanding the IGA. The shape functions of isogeometric
elements are defined in the parameter space, which can be seen for a 2D example on the left
hand side in Fig. 2. The parameter space is divided into elements and spanned by the knot
vectorsΞ =

[
ξ1 ξ2 ... ξn+p+1

]
and H=

[
η1 η2 ... ηm+q+1

]
.

Thereby, p and q are the order of the basis functions and n and m are the numbers of the basis
functions Ni,p and M j,q. The order of the basis functions can be subsequently increased with the
algorithm in [10]. In IGA, the local shape functions are based on B-splines, which can be computed
recursively with the Cox-de Boor algorithm [4]. In ξ -direction, the B-splines are computed as

p = 0 : Ni,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise.

(2)

p > 1 : Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ ). (3)

The calculation rule given by Eq. (2) and Eq. (3) is identical in η-direction. In practice, recursive
functions are numerically inefficient. Therefore, a non-recursive algorithm suggested in [10] is
used.

3.2 Non-Uniform Rational Basis Splines
Besides the parameter space there is the physical space, which can be seen on the right hand side in
Fig. 2. In the physical space, the control points Pi, j are defined, which are arranged by the control
net. The task of the control points is to span the geometry in the physical space. The dimension

physical space

Rp,q
i, j (ξ ,η)

10

1

2

3

4

ξ

η
parameter space

element

control point
NURBS surface

control net

knot
x

y

Figure 2: Parameter space and physical space in the IGA.
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of the control points corresponds to the numbers of B-splines n and m in the parameter space. In
addition to the physical position, each control point has a weight wi, j. The transformation from the
parameter space into the physical space requires the NURBS basis Rp,q

i, j given by

Rp,q
i, j (ξ ,η) =

Ni,p(ξ )M j,q(η)wi, j

∑n
î=1 ∑m

ĵ=1 Nî,p(ξ )M ĵ,q(η)wî, ĵ
. (4)

The NURBS basis Rp,q
i, j and the control points Pi, j then lead to the NURBS surface

S =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)Pi, j, (5)

in the physical space. The degrees of freedom in the IGA correspond to the displacements of the
control points

ui, j = Pi, j−P 0
i, j, (6)

wherebyP 0
i, j represents the position of the control points in the undeformed andPi, j in the deformed

configuration. The deformation d of the NURBS surface can be written in matrix-vector notation as

d=

[
Rp,q

1,1 0 Rp,q
1,2 0 ... 0

0 Rp,q
1,1 0 Rp,q

1,2 ... Rp,q
p+1,q+1

]

︸ ︷︷ ︸
N




u1,1,x
u1,1,y
u1,2,x
u1,2,y

...
up+1,q+1,y




︸ ︷︷ ︸
u

, (7)

where the basis functions of the corresponding element are summarized in matrixN .

3.3 Hierarchical Refinement
The concept of the hierarchical refinement relies on the property of B-splines to be represented by a
linear combination of finer B-splines defined on smaller knot-intervals. With the calculation rule

a j = 2−p
(

p+1
j

)
= 2−p (p+1)!

j!(p+1− j)!
(8)

linear coefficients can be determined to represent a B-spline in a higher level with B-splines of
lower level. It should be noted that Eq. (8) is only valid for uniform knot vectors. As an example, a
quadratic B-spline with the high-level knot vector

Ξ1 =
[
0 1 2 3

]
(9)

should be represented by a number of lower level B-splines with the corresponding low-level knot
vector

Ξ2 =
[
0 0.5 1 1.5 2 2.5 3

]
. (10)

The inserted knots in Eq. (10) are underlined. By applying Eq. (8) the concept of the hierarchical
refinement can be visualized in Fig. 3. The procedure, which is implemented and used in this work,
is briefly summarized in the following. For a detailed introduction to the hierarchical refinement,
see [5].

Initially, the parameter space is divided into the different hierarchy levels. Recapturing the motiva-
tion example in Fig. 1, the corresponding parameter space is displayed on the right hand side. This
division is made up by intervals in knot coordinates. The concept of hierarchical refinement is that
a finer mesh resolution can be defined section by section. Therefore, the levels are initialized using
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Figure 3: Concept of the hierarchical refinement in the IGA.

the global knot insertion algorithm described in [4]. With this algorithm, the position of the control
points and their weights can be determined for the finer mesh. The number of hierarchy levels is
denoted as nlvl.

In hierarchical refinement, B-splines of higher level are based on B-splines of lower level. For the
construction of higher level B-splines, the linear combination coefficient matrixA is determined by
solving

N`
i,p =A

`
i, jN

`+1
j,p `= 1...nlvl−1 (11)

between all nlvl hierarchy levels. A detailed description of this procedure can be found in [11].

In the next step, the elements are defined with the knot vectors of the different levels and the
intervals, which defined the hierarchy level with respect to the knot coordinates. The previous step
allows certain B-splines to be identified as inactive. Thus, the associated control points of each
element can be determined. Thereby, the control points can be located in different hierarchy levels.
The control points that are not part of an element are identified as inactive.

The hierarchical B-splines of the example introduced at the beginning in Fig. 1 are depicted in
Fig. 4. It can be seen that B-splines of different hierarchy levels can be active, e.g. at the knot
coordinate ξ = 0.2 in Fig. 1. This overlap becomes relevant when calculating the NURBS basis
from Eq. (4). The B-splines of the different dimensions of the parameter space need to be multiplied
out. These intersections of the B-splines lead to the fact that for the computation of the NURBS
any level can interact with any level of the other dimensions in the parameter space. The more
hierarchical levels that are created, the more combinations of possible intersections of the B-splines
can occur. This may increase the calculation time of the hierarchical NURBS basis compared to a
globally refined model. In addition to the more complex calculation of the NURBS, the B-splines
from the different hierarchy levels must be constructed, which takes additional computation time.
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Figure 4: Concept of the hierarchical refinement in the IGA.
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3.4 IGA Equations of Motion
As with the floating frame of reference formulation, it is assumed that only small elastic defor-
mations occur in a relatively stiff material. Therefore, linear elasticity is assumed and the weak
Galerkin method is applied as for isoparametric elements [2]. The local mass and stiffness matrix
of an element is therefore given by

Ke, j =
∫

Ωe, j

BᵀCB dΩe, j j = 1...ne, (12)

Me, j = ρ
∫

Ωe, j

NᵀN dΩe, j j = 1...ne, (13)

where C is the material elasticity matrix and ne the number of elements. The strain displacement
matrixB is obtained by differentiating the NURBS basis Rp,q

i, j and using the Jacobian transforma-
tion [2]. The integration over each element Ωe, j is performed by Gauss quadrature in the parameter
space. The basis functions N and the strain displacement matrix B are evaluated at each Gauss
point. As stated in [4], the same Gauss rule for a polynomial of the order p can be applied to a
p-th order B-spline. Therefore, the Gauss order p+ 1 is chosen in ξ -direction and q+ 1 in η-
direction. The global system matricesKe andMe are assembled from the corresponding element
matrices Ke, j and Me, j. The equations of motion of the complete finite element model are then
given by

Meüe +Keue = fe, (14)

where the displacements of the control points are represented by ue and the external forces by fe.

3.5 Model Order Reduction
For the incorporation of the isogeometric model into the flexible multibody simulation, the global
shape functionsΦ are required. The global shape functionsΦ for Eq. (1) can be determined from the
linear system equations (14) with a model order reduction method. The straightforward approach
for reducing the equations of motion (14) is modal reduction. However, as shown in [12], modal
reduction leads to inaccurate results in case of impact problems, since the local deformation in the
contact region is not included in the reduced model. Alternatively, the Craig-Bampton method [3]
is used, which has already been successfully applied to impact problems with isoparametric
elements [12]. The key idea of the Craig-Bampton method is to combine fixed-interface normal
modes and constraint modes. The normal modes represent the overall flexibility and the constraint
modes allow a relatively accurate representation of the deformation in a specific area of the flexible
body, e.g. the contact area. For the constraint modes, predefined interface control points on the
exterior surface can be selected. The procedure results in the global shape functions Φ, which are
normalized to the mass matrix. The reduced mass and stiffness matrix are then given by

M e =Φ
ᵀMeΦ= E and Ke =Φ

ᵀKeΦ= diag(ω2
i ) (15)

respectively, where E is the identity matrix and ωi are the natural frequencies. Since the normal
modes tend to be low and the constrained modes high, the equations of motion (1) become
numerically stiff. Damping the high modes with the method of [13] and the parameters of [14]
increases the numerical performance.

4 CONTACT HANDLING IN IGA
There exist several methods for discretizing the contact of two isogeometric bodies. Two frequently
used types of methods are the integral description of the contact and the node-to-segment methods.
In the integral description of the contact, Gauss points of preselected elements are checked [14]. The
number of evaluation points depends on the number of elements in the contact area and on the order
of the B-splines due to the Gauss integral. For node-to-segment methods, the number of evaluation
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points depends only on the number of elements in the contact area. Since node-to-segment methods
require fewer points to be checked for contact and the accuracy is still comparable to that of an
integral description [15], a node-to-segment method is chosen for this work.

For node-to-segment methods, different collocation methods, e.g. Botella points can be used [15].
The following section briefly summarizes the contact algorithm described in [14]. This collocation
method is combined with the penalty method for contact treatment. The corresponding penalty
factor cp is chosen heuristically. Thereby, the penalty factor should be chosen large enough such that
the results become independent of the chosen parameter [16]. When the penalty factor is increased
beyond its converging value, the differential equation (1) becomes stiffer and the simulation time is
unnecessarily increased or the simulation might even terminate unsuccessfully.

At each time step, the individual bodies must be checked for contact. To this end, the position of the
deformed control points Pi, j is determined. First, the control points displacements are recovered

ue =Φqe (16)

with the global shape functions Φ and the elastic coordinates qe. After that, the position of the
control points is computed from Eq. (6). In case of contact between two bodies, one body is defined
as the contact body and the other as the target body, as depicted in Fig. 5. The Botella points, which
are located on the outer surface of the contact body and in the contact area, are tested for contact
with the exterior surface of the target body. The contact check is achieved by solving

(
∂xT(ξ )

∂ξ

)ᵀ
(xC−xT(ξ )) = 0 (17)

with the Newton–Raphson method for the respective knot coordinate, e.g. ξ . This knot coordinate ξ
corresponds to the target point xT(ξ ), which is closest to the current Bottela point xC of the contact
body. The distance gn between the contact and target point is determined by

gn = n
ᵀ(xC−xT(ξ )), (18)

where the normal vector n is orthogonal to the surface of the target body. If the normal gap gn is
greater than zero, there is no contact. Otherwise, the contact force for the current sampling point is
determined by

fc = cpgnN
ᵀnω̂i, (19)

where cp is the penalty factor, N the local shape functions and ω̂i the collocation weight of the
current collocation point. See [15] for the derivation of the collocation weight. To eliminate the
distinction between contact and target body, they are switched and the contact force is averaged.
After the contact search, the discrete forces can be calculated with

hd =
n

∑
i=1

m

∑
j=1




E
P̃i, j

Φᵀ
i, j


fc,i, j (20)

and inserted into Eq. (1). The contact algorithm described above is implemented in MATLAB.
However, for the sake of computational efficiency, the algorithm is compiled into C-code using
the MATLAB-MEX toolbox. The contact search can be parallelized with respect to the contact
evaluation points.

5 APPLICATION EXAMPLE: IMPACT OF TWO SPHERES
The aim of this application example is to compare globally and locally refined isogeometric models
in the context of an impact simulation in a flexible multibody system. It is investigated whether
a locally refined model has the same accuracy as an equivalent globally refined model and how
locally and globally refined models differ in computation time.
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In this application example, the impact of two spheres is simulated. This simple example is well-
suited as a benchmark because an analytical solution exists [17]. For the sake of simplicity, the
spheres are identical and, therefore, the problem is symmetric. Despite the symmetry, both spheres
are modeled. However, the axisymmetric property of a sphere is exploited by a semicircle. The
simulation setup is visualized in Fig. 6. The radii of the spheres are r = 1cm and the selected

e2

e1

xC

xT(ξ )

contact body

target body

ngn
∂xT(ξ )

∂ξ

knotelement botella
point

Figure 5: Contact detection between two bodies.

r = 1cm

v0 = 0.1 m
s

v0 = 0.1 m
s

Figure 6: Impact of two spheres.

material is steel. Therefore, the Young’s modulus is chosen as E = 2.11×1011 Pa, the density
as ρ = 7850 kg

m3 and the Poisson’s ratio as ν = 0.3. Both spheres have an initial velocity of v0 = 0.1 m
s

and gravity is ignored. For the initialization of the geometry the knot vectors of the semicircle are
defined asΞ =

[
0 0 0 1 1 1

]
and H=

[
0 0 1 1

]
. The initial order of the B-splines is

given by p = 2 and q = 1. The control points and weights in the physical space are

P 0
i, j,1 =




0 0
r r
r r


 , P 0

i, j,2 =



−r r
−r r
0 0


 , and wi, j =




1 1
1√
2

1√
2

1 1


 . (21)

After defining the geometry, the model is globally refined to represent the overall elastic deformation
better. In this, the order of the B-splines is increased by two resulting in the order p = 2+2 = 4
and q = 1+ 2 = 3. Adding 15 knots in ξ - and 24 knots in η-direction increases the number of
elements from one to 400. This refined model serves as a starting point for various benchmark
models. It is worth noting, that all tested models have an element edge length of 10µm in the
contact area. The models are reduced with the Craig-Bampton method, using ten normal modes,
and the exterior control points in the contact area are used for the constrained modes.

Four locally refined models are compared for the following studies. The number of hierarchy
levels nlvl is varied between three and six. Each of these four locally refined models has an
equivalent globally refined reference model. The equivalence is that the knot vectors of the globally
refined models are identical to the knot vectors in the lowest level of the locally refined models. The
investigated models are listed in Table 1 and visualized in Fig. 7. The number of interface control
points is nearly identical for all models. Accordingly, the number of elastic coordinates nq after the
model reduction is almost identical regardless of whether the model was globally or locally refined.
In addition, it should be emphasized that in this example, the number of degrees of freedom ndof
decreases as the number of hierarchy levels nlvl increases. The dimensions on the left side of the
four IGA models in Fig. 7a-7d represent the height of the lowest hierarchy level, which becomes
relevant in the further course of the analysis. The model with five hierarchy levels in Fig. 7c
represents the most uniform distribution of elements. Since the goal in this application example is
to create an element length of 10µm in the contact area, models with more than six hierarchy levels
are not necessary, as shown in Fig. 7d.

The impacts in this work are simulated with a penalty method. As mentioned before, the penalty
factor cp is increased until the results become independent of the penalty factor. In Fig. 8, the
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Table 1: Globally and locally refined benchmark models of an axisymmetric sphere.

locally refined nlvl = 3 nlvl = 4 nlvl = 5 nlvl = 6
degrees of freedom ndofs 3856 2884 2728 1708

number of elastic coordinates nq 10+82 10+80 10+84 10+82
globally refined

degrees of freedom ndofs 9216 7440 6726 5368
number of elastic coordinates nq 10+82 10+80 10+80 10+78
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Figure 7: Detail plot of contact area of the hierarchical models of the axisymmetric sphere.

maximum relative error of the contact force for the analytic solution [17] is visualized. Two
observations can be made from Fig. 8. First, it is observed in Fig. 8a that the penalty factor is
independent of the number of hierarchy levels. Second, a globally and locally refined model behaves
almost identically here, as seen in Fig. 8b. Figure 8 shows that for the penalty factors cp greater
than 5×1018 N/m the error of the contact force remains constant at approximately 2%. Therefore,
this factor is used for the following simulations. It is noted that the calculation time also increases
with increasing penalty factor, since the equations of motion to be solved become stiffer.

Next, the influence of the number of hierarchy levels nlvl on the computation time of the impact
simulation shown in Fig. 9 is discussed. Although the contact search can be parallelized with
respect to the evaluation points, sequentially executed simulations are more independent of the
architecture of the computer, the MATLAB-MEX implementation of parallel for-loops, the code
quality, and the used operating system WINDOWS. Therefore, the sequential computation allows a
better relative comparison of the individual models. The processor used is the Intel W-2295 model
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Figure 8: Contact force error with respect to the analytic solution by Hertz [17].
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Figure 9: Comparison of computation times.

with 18 cores. It should be noted that the following qualitative observations may depend on the
particular application example.

Observing the computation time of the sequential simulation in Fig. 9a, it can be seen that the
computation time increases, in this case linearly, as the number of hierarchy levels increases. In
contrast, the computation time of the globally refined reference models decreases. The latter
observation can be attributed to the fact that the number of degrees of freedom ndof decreases, see
Table 1. Since the globally refined models have only one level in the parameter space, it is likely
that the number of degrees of freedom ndof directly influences the computation time. If the number
of degrees of freedom ndof is smaller, the matrix of global shape functions Φ is also smaller, and
the calculation of Eq. (16) and Eq. (20) is faster.

Although, the degrees of freedom of the locally refined models decrease as the number of hierarchy
levels increases, the aforementioned effect does not seem to be dominant here. In the literature [5, 6,
7, 8], the degrees of freedom saved by local refinement are listed as an advantage. This advantage
does not apply in this work since the models are reduced with the Craig-Bampton method and
the reduction of the number of elastic coordinates nq is almost identical regardless of the type of
refinement, see Table 1. In applying the floating frame of reference formulation, the reduced mass
and stiffness matrix are used for calculation. The full mass matrix does not have to be inverted
in each time step. Only the global shape functions Φ have to be transposed in Eq. (20) for the
contact algorithm, which is much more time-saving than a matrix inversion. Since the number
and position of contact evaluation points are also identical for the respective globally and locally
refined models, the evaluation of the NURBS in the course of the contact evaluation remains the
last possible cause for the difference in computation time. The additional computational effort in
computing hierarchical NURBS described in Section 3.3 is responsible for the higher computational
time in Fig. 9a.
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In the parallel computation in Fig. 9b, the globally refined models are likewise faster. However, the
difference between the globally and locally refined models is smaller compared to the sequential
computation. In this case, the locally refined models seem to benefit more from the parallel
computation than the globally refined models, whereby the MATLAB-MEX implementation could
be responsible for this.

In the last analysis of this application example, the von Mises stresses are observed when they
are maximum. The time of maximum occurrence of the von Mises stresses is when the contact
force is maximum [17]. With the analytical solution by Hertz [17], the von Mises stresses along the
symmetry axis of the sphere are displayed in Fig. 10. Initially, it can be observed that all locally
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Figure 10: Maximum von Mises stresses along the symmetry axis of the locally refined models.

refined models can represent the stresses well. However, it is noticeable that a small oscillation can
be seen at the y-position, where a switch of the hierarchy level takes place. The height of the lowest
hierarchical level from Fig. 7 can be reflected in the stress analysis in Fig. 10. For comparison, a
full hierarchical IGA model is tested. In order to include it in the same framework, the full IGA
model is modally transformed using all modes. The oscillations still occur and thus are independent
of the model reduction. In the globally refined models, which are not shown here, these small
oscillations do not occur.

6 CONCLUSIONS
Overall, it can be concluded that it is feasible to obtain global shape functions for flexible multibody
systems from hierarchically refined isogeometric finite element models. A model reduction with
the Craig-Bampton method can be performed, and the global shape functions of the IGA can
be smoothly included in the floating frame of reference formulation. Subsequently, an impact
simulation can be performed using the penalty formulation. The penalty factor converges for
hierarchically refined models, and the differences in the accuracy between the locally and globally
refined models are minor. Since the locally and globally refined models are approximated with the
same number of elastic coordinates and the evaluation of hierarchical NURBS in the contact routine
is more complex, the overall computation time using the locally refined models is higher than the
globally refined models. The computational savings achieved in the literature [5, 6, 7, 8] cannot be
achieved with transient contact simulations in flexible multibody systems. However, it remains an
open question whether a more efficient hierarchical NURBS algorithm can outperform a globally
refined model. Adjustments to the contact algorithm are also feasible, whereby the NURBS basis
of the contact body is determined in preprocessing.
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ABSTRACT 

This paper focuses on the clamping properties influence on the dynamic properties 

of clamped boring bars. The boring bar is modeled as a cantilever Euler–Bernoulli 

beam and a three span configuration in a Winkler foundation, in this way, this theory 

is applied to derive the transcendental equation for a general case applicable to the 

system with span beam at an arbitrary location. Eigenvalue plots of the first three 

modes are presented along with their respective mode shapes. The corresponding 

natural frequency equations are given and obtained by numerical calculation. The 

theoretical calculations are validated and discussed. These results confirm that within 

reason, the theory matches the literature and have relatively approach with the 

experimental values. 

Keywords: boring bar, Euler–Bernoulli beam, Winkler foundation, Eigenvalue, 

natural frequency. 

1. INTRODUCTION 

Consider the transverse displacements y(x, t) at time t of a beam of length L aligned with the 

interval 0 < x < L in the Cartesian xy plane. There are several mathematical models of varying 

complexities that describe the motion y(x, t), the simplest of which is due to Euler and is known 

as the Euler beam model: 

 
4 2

4 2
( , )

y y
EI A f x t

x t


 
 

 
 (1) 

Here, A is the beam's cross-sectional area, I is the cross-sectional moment of inertia, ρ is the 

density (i.e., mass per unit volume of the beam), E is the material's Young's modulus, and f(x, t) 

is the load per unit length applied to the beam. 

Each of the derivatives ∂ny/∂nx, n = 1; 2; 3, has a physical interpretation and significance: 

∂y/∂x is the beam's slope, 

EI ∂2y/∂2x is the bending moment at the cross-section x, 

EI ∂3y/∂3x is the vertical shear force at the cross-section x, 
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as illustrated in Fig. 1. Boundary conditions associated with the PDE (1) are determined by 

translating the physics of the setting through these observations; see Fig. 2. 

 

 

 

 

 

 

 

 

Figure 1. (a) A beam with pinned supports at the ends and a distributed load applied to a part of 

it. The bending of the beam results in an internal moment M (Figure (b)) and a transverse shear S 

at each cross section (Figure (c)). 

 

 

 

 

 

 

 

 

 

 

Figure 2. The diagrams show the boundary conditions associated with (a) a beam with pinned 

supports at the ends; (b) a cantilever beam; (c) a beam partially supported on a Winkler foundation 

and free otherwise.  

2. WINKLER FOUNDATION 

The earliest formulation of the foundation model was due to Winkler, who assumed the foundation 

model to consist of closely spaced independent linear springs, as shown in Fig.3. If such a 

foundation is subjected to a partially distributed surface loading, q, the springs will not be affected 

beyond the loaded region. For such a situation, an actual foundation is observed to have the 

surface deformation as shown in Fig. 4. Hence by comparing the behavior of theoretical model 

and actual foundation, it can be seen that this model essentially suffers from a complete lack of 

continuity in the supporting medium. The load deflection equation for this case can be written as 

 q kw  (2) 

where k is the spring constant and is often referred to as the foundation modulus, and w is the 

vertical deflection of the contact surface. It can be observed that Equation 2 is exactly satisfied 

by an elastic plate floating on the surface of a liquid and carrying some load which causes it to 

deflect. The pressure distribution under such a plate will be equivalent to the force of buoyancy, 

k being the specific weight of the liquid. With this analogy in view, the first solution for the 

bending of plates on a Winkler-type foundation was presented by Hertz (1884). 
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Figure 3. Load on Winkler’s foundation 

 

 

 

 

 

 

 

 

 

 

Figure 4. Deformation of actual foundation. 

A Winkler foundation is a distributed springy support, similar to a mattress, that restrains the 

beam's motion. The Winkler foundation may extend to the entire beam, from end to end, or be 

limited to a subset of the beam as in Fig. 2(c). We write K(x) for stiffness of the foundation, 

allowing for the stiffness to vary with x. The force exerted by the foundation per unit length of 

the beam is -K(x) y(x, t), where y(x, t) is the beam's transverse displacement. This leads to the 

modified form of Euler's equation. 

 
4 2

4 2
( , ) ( )

y y
EI A f x t K x y

x t


 
  

 
 (3) 

In the study of a beam's natural frequencies of vibration which is our concern in these notes, the 

applied load is immaterial. Therefore we let f(x, t) = 0 from this point onward and focus on the 

equation: 

 
4 2

4 2
( ) 0

y y
EI A K x y

x t


 
  

 
 (4) 

3. NATURAL FREQUENCY OF VIBRATIONS 

We wish to investigate the natural frequencies of vibrations of an Euler beam of length L 

supported on a Winkler foundation. We reduce the equation of motion to a nondimensional form 

by introducing ξ = x/L as the dimensionless length variable, and write Y (ξ, t) = y(x, t). Then the 

equation of motion (3) changes to 

 
2 4

2 4 4
( ) 0, 0 1, 0.

Y EI Y
A K L t

t L
  



 
     

 
 (5) 

We seek harmonic oscillations of the form Y (ξ, t) = eiΩtu(ξ), where i is the unit imaginary number 

and the angular frequency is to be determined. We substitute this form into Equation (4) and 

simplify to arrive at 

 
4 4

'''' 2 ( )
( ) ( ) ( ) 0, 0 1.

AL K L L
u u u

EI EI

 
          (6) 
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This leads to the introduction of the dimensionless frequency ω and dimensionless stiffness κ 

through 

 
4 4

2 2 ( )
, ( ) ,

AL K L L

EI EI

 
      (7) 

Where upon Equation (4) takes the form 

 '''' 2( ) ( ) ( ) ( ) 0, 0 1.u u u            (8) 

4. A CANTILEVER BEAM 

As an exercise, and also to motivate the next section's calculations, let us determine the natural 

frequencies of vibrations of a cantilever beam in the absence of a Winkler foundation, that is, κ(ξ) 

= 0 in Equation (8). Thus, referring to Fig. 2(b), we are faced with the boundary value problem 

 '''' 2( ) ( ) 0, 0 1,u u        (9) 

 ' '' '"(0) 0, (0) 0, (1) 0, (1) 0.u u u u     (10) 

The characteristic equation of the differential Equation (9) is r4 - ω2 = 0. Therefore r2 = ±ω (we 

assume ω > 0 without a loss of generality) and conclude that the characteristic roots are r = ±ω½ 

and r = ±iω½, or, letting λ = ω½ to simplify the notation, r = ±λ, and r = ±iλ. We conclude that the 

general solution of the differential equation is 

 1 2 3 4( ) cos sin cosh sinhu c c c c         (11) 

Applying the boundary conditions leads to the equations 

 

1 3

2 4

1 2 3 4

1 2 3 4

0

0

cos sin cosh sinh 0

sin cos sinh cosh 0

c c

c c

c c c c

c c c c

   

   

 

 

    

   

 (12) 

which we express in the matrix form as 

 

1

2

3

4

1 0 1 0 0

0 1 0 1 0

cos sin cosh sinh 0

sin cos sinh cosh 0

c

c

c

c

   

   

    
    
    
     
    

    

 (13) 

Let us write M(λ) for the 4x4 coefficient matrix in (13). This system of four linear homogeneous 

equation in the four unknowns c1, c2, c3, c4 will have a nontrivial 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The circles mark the first three roots of the Equation (14). Except for the first, the roots 

https://doi.org/10.3311/ECCOMASMBD2021-222

129



essentially agree with those of the cosine function. 

solution provided that det M(λ) = 0. Expanding and simplifying the determinant, leads to the 

equation 

 
1

cos( )
cosh( )




   (14) 

whose roots are depicted graphically in Fig. 5. The first three roots are 

 1 2 31.875104068 4.694091132 7.854757438      (15) 

Corresponding to each root λi, i = 1, 2, …, the system (13) has a nontrivial solution lying within 

the one-dimensional null space of M(λi). A numerically robust way of calculating the basis vector 

of that one-dimensional null space is through the singular value decomposition of M(λi), that is,  

 ( ) T
iM USV   (16) 

where U and V are orthogonal matrices, and S is the diagonal matrix of M(λi)’s singular values. 

See, for instance [3, 4, 5, 6]. It turns out, see, e.g., Theorem 5.2 in [5], that the rightmost column 

of the matrix V is the basis of the null space. Thus, we calculate the null spaces of M(λ) 

corresponding to the first three roots λi and obtain 

 

1 1 1

2 2 2

3 3 3

4 4 41 2 3

0.5000 0.5000 0.5000

0.3670 -0.5092 0.4996

0.5000 0.5000 0.5000

-0.3670 0.5092 -0.4996

c c c

c c c

c c c

c c c

           
          
            
          
          

          

 (17) 

and therefore, according to (11), the mode shapes are 

 
1 1

1 2

1 3

( ) 0.5cos 0.3670sin 0.5cosh 0.3670sinh , ( 1.8751)

( ) 0.5cos 0.5092sin 0.5cosh 0.5092sinh , ( 4.6941)

( ) 0.5cos 0.4996sin 0.5cosh 0.4996sinh , ( 7.8548)

i i i i

i i i i

i i i i

u

u

u

         

         

         

     

     

     

 (18) 

We have normalized the modes so that ui(1) = 1 for each mode. That c1 and c3 are ±1/2 is not a 

coincidence. It can be shown that c1 and c3 are ±1/2 for all normalized modes for all frequencies. 

The mode shapes are shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

Figure 6. The first three mode shapes of the natural vibrations of a cantilever beam. 

5.  A NUMERICAL EXAMPLE – CANTILEVER BEAM  

For this illustration, we consider a cantilever beam with parameter values taken from [1] which 

is somewhat extended pre-print manuscript corresponding to the published article [2]. (Some of 

the parameter values have been omitted in the latter.) Specifically, from page 13 of [1] we have 

 
3 2 7 4

3 9 2

1.1933 10 , 1.138 10 ,

7850 / 205 10 /

A m I m

kg m E N m

    

  
 (19) 
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and from Section 3.2.1 of [1] we have L = 0.200m 

Let us calculate beam's three lowest natural frequencies. From Equation (14) and referring to Fig. 

5, the three smallest roots are 

 1 2 31.875104068 4.694091132 7.854757438      (20) 

and therefore 

 2 2 2
1 1 2 2 3 3=3.516015266 =22.03449156 =61.69721441         (21) 

From (5) we have 

 
4

EI

AL



   (22) 

Plugging in the data into the above, we conclude that circular frequencies are 

 1 1 1
1 2 14386.611508s 27490.42508s 76973.98625s         (23) 

Then we calculate the (ordinary) frequency (oscillations per second) from f =Ω/ (2π): 

 1 2 2698.1509048 Hz 4375.237039 Hz 12250.79040 Hzf f f    (24) 

which agree with the data given in Table 3.11 of [1] (and Table 5 of [2]), as expected.  

 

 

 

 

 

Figure 7. A beam of length L partially supported on a Winkler foundation. The resulting three 

spans are of lengths L1, L2, and L3, from left to right. We let α = L1=L, β = (L1 + L2)=L. 

6. A NUMERICAL EXAMPLE – 3 SPAN BEAM 

Fig. 7 depicts a beam of length L supported on a Winkler foundation for a part of its length. We 

write L1, L2, and L3 for the lengths of the beam's three segments. As in the previous sections, we 

introduce the nondimensional length variable ξ = x/L, and write α=L1/L and β= (L1+L2)/L for 

the (nondimensional) coordinates of the interfaces of the three segments.  

We assume that foundation's nondimensional stiffness (see (7)) is a constant k on the supported 

part, that is, the coefficient κ(ξ) of Equation (8) is of the form 

 ( )
0

k if

otherwise

  
 

 
 


 (25) 

Consequently, we express the deflection, u (ξ), as a piecewise defined function 

 

1

2

3

( ) 0

( ) ( )

( ) 1

u if

u u if

u if

  

    

  

 


  
  

 (26) 

The functions u1, u2, and u3 are solutions of the equations 

 

'''' 2
1 1

'''' 2
2 2

'''' 2
3 3

( ) ( ) 0 0

( ) ( ) ( ) 0

( ) ( ) 0 1

u u if

u k u if

u u if

    

     

    

    


    


   

 (27) 

The general solution of each of these fourth order equations comes with four undefined 

coefficients. Therefore, the solution of the overall system involves 12 unknown coefficients. The 
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physics of the problem supplies 12 boundary and continuity conditions which may be applied to 

determine the 12 unknowns. Those conditions are 

 '' '''
1 1(0) 0, (0) 0,u u   (28) 

 ' ' '' '' ''' '''
1 2 1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),u u u u u u u u            (29) 

 ' ' '' '' ''' '''
1 2 1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),u u u u u u u u            (30) 

 '' '''
1 1(1) 0, (1) 0,u u   (31) 

 

The boundary conditions (28) set the moment and shear at the endpoint ξ = 0 to zero, implying 

that end moves freely. The boundary conditions (31) do the same for the endpoint ξ = 1. The 

boundary conditions (30) indicate that the displacement, slope, moment, and shear are continuous 

at ξ = α, and thus, the interface at ξ = α moves free of constraints. The boundary conditions (30) 

assert the same thing about the interface at ξ = β. 

Equations (27)1 and (27)3 are the same as (9), and therefore their solutions are as given in (11), 

that is 

 1 1 2 3 4( ) = A cos( ) + A sin( ) + A cosh( )+ A sinh( )u       (32) 

 3 1 2 3 4( ) = C cos( ) + C sin( ) + C cosh( )+ C sinh( )u       (33) 

Solving (27)2 requires more e ort since the expression for the general solution depends on the sign 

of ω2-k. For that reason, the analysis branches out into three cases. 

Case 1: ω2 > k. In this case, equation (27)2 is qualitatively the same as the two other equations in 

(27). It is a matter of replacing ω2 by ω2-k. Therefore, we obtain 

 
4 4 42 2 2

2 1 2 3 4

2

( ) = B cos( ) + B sin( ) + B cosh( )+ B sinh( ), 

(assuming )

u k k k

k

       



  


 (34) 

We apply the 12 boundary conditions (28) to (31) to the solution fragments (32), (33), and (34) 

and obtain a homogeneous linear system of 12 equations in the 12 unknowns A1, A2, A3, A4, B1, 

B2, B3, B4, C1, C2, C3, C4. The system will have a nontrivial solution provided that the determinant 

of its 12x12 coefficient matrix is zero. The symbolic calculation of that determinant is quite a 

demanding task. We computed that in Maple but we do not show the result here since it will fill 

several printed pages. What needs to be noted here is that the determinant involves the non-

dimensionalized frequency ω and stiffness k. By setting the determinant to zero, we may solve 

for the natural frequencies ω for any given k.  

Having calculated the natural frequencies, the modal shapes are determined as in the case of the 

cantilever beam in Section 5 by applying the singular value decomposition to the system's 12 x 

12 coefficient matrix.  

Case 2: ω2 = k. In this case, equation (27)2 reduces to u’’’’(ξ) = 0 which has a cubic polynomial 

as its general solution:  

   3 4
2 1 2 3 4u B B B B        (35) 

We apply the boundary and interface conditions (13) and obtain a homogeneous linear system of 

12 equations in 12 unknowns A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4. We set the determinant 

of the coefficient matrix to zero in order to obtain nontrivial solutions. The determinant involves 

the foundation stiffness k. Therefore, Case 2 occurs only for special choices of the foundation 

stiffness. The special values of k and the corresponding mode shapes may be obtained by a 

calculation similar to that of Case 1.  

Case 3: ω2< k. Recall that equation (27)2 reads 

      '''' 2
2 2 0u k u      (36) 
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Since ω2< k, we rewrite it as 

      '''' 2
2 2 0u k u      (37) 

The sign change of the parenthesized coefficient has a profound effect on the form of the 

equation's general solution. Let us write λ4 = k-ω2. The equation reads u2’’’’ + λ4u2 = 0. The 

characteristic equation is r4 + λ4 = 0, which has roots λ=[1/(2)1/2](±1±i). It follows that the 

differential equation's general solution is 

 

 2 1 2

3 4

cosh cos sinh cos
2 2 2 2

cosh sin sinh sin
2 2 2 2

u B B

B B

   
    

   
   

  



 (38) 

where λ=(k-ω2)1/4. The calculation of the eigenfrequencies ω proceeds as in in previous cases. 

 

 

Figure 8. The frequencies ω plotted against the foundation stiffness k for the Winkler-supported 

beam of Figure 7. The gray curve is the graph of ω2 = k that separates the three cases considered 

in Section 6.  

7. NUMERICAL CALCULATIONS OF A THREE-SPAN WINKLER-SUPPORTED 

BEAM 

We apply an appropriately modified version of Section 5's numerical data to the Winkler-

supported beam. Following [1] and [2], we take 

 

1 2 3

3 2 7 4

3 9 2

0.215 , 0.050 , 0.035

1.1933 10 , 1.138 10 ,

7850 / , 205 10 / ,

L m L m L m

A m I m

kg m E N m

 

  

   

  

 (39) 

whence L = L1 +L2 +L3 = 0.300 m, and α = 215/300, β = 265/300. We allow for a wide range 

of the (non-dimensionalized) foundation stiffness by letting k range from 101 to 106. For k in that 

range we calculate the beam's natural frequencies ω. Fig. 8 shows the results for the first six 

vibration modes.  

The calculation that produces that diagram is quite nontrivial due to the fact that the determinant 

of the coefficient matrix is not only an exceedingly large transcendental expression, but that is 

oscillates wildly as a function of k, taking values in the range 10-80 to 10-80. As a result, calculating 
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the roots of the determinant is not feasible in the usual hardware floating point arithmetic of a 

typical computer which handles roughly 16 to 17 significant digits. Attempting to calculate the 

roots in hardware floating point either produces no result (no convergence) or produces junk. We 

performed the calculations in Maple's software floating point arithmetic with 70 significant digits 

and verified that a further increase of the number of significant digits does not affect the results 

in an appreciable way.  

The specific beam analyzed in [1, 2] is just like the beam considered above, but instead of a 

Winkler foundation, the beam is held in place with three pairs of torqued screws. The screws are 

elastic and therefore allow for some transverse displacement of the beam, somewhat similar to 

our Winkler foundation. The spring constants kT of the screws are given in Table 2.6 of [1] (Table 

3 of [2]) as kT =4.881 x 109 N/m and kT = 7.732 x 109 N/m, depending on the type of the screw. 

For the present calculations, we take an intermediate value of kT = 6 x 109 N/m. There are three 

pairs of such retaining screws acting along the length L2 = 0.050 m. If we distribute the force 

exerted by the screws uniformly along the length L2, we obtain the Winkler foundation's stiffness 

as 

 
 9

11 2 11
3 6 10

3.6 10 / 3.6 10
0.05

K N m Pa
 

      (40) 

and then, according to (5), the dimensionless stiffness is 

 
4 11 4

5

9 7

(3.6 10 ) 0.3
124994.64 1.25 10

(205 10 ) (1.138 10 )

KL

EI




 
    

  
 (41) 

The non-dimensional natural frequencies ω of such a beam may be read off of the graphs in Fig. 

8, or for greater accuracy, calculated directly. We find the first three frequencies to be 

 1 2 35.569355, 34.655339, 87.598947,      (42) 

and then calculate the actual circular frequencies from (11) as:  

 1 1 1
1 2 33088.167304s , 19216.13583s , 48572.98441s ,         (43) 

Finally, we calculate the (ordinary) frequency (oscillations per second) from f = Ω/2π: 

 1 2 3491.497, 3058.343, 7730.630,f f f    (44) 

These frequencies are somewhat lower than those presented in Table 3.13 of [1] (Table 5 of [2]), 

which is expected, since a Winkler foundation allows greater flexibility compared to clamping 

screws. 

Fig. 7 depicts the mode shapes corresponding to these frequencies. 

8. CONCLUSION 

It was possible to model a fixation of the tooling system by applying Euler Bernoulli beam model 

with Winkler Foundation. Furthermore, costly and time-consuming experiments could be 

replaced by even analytical modelling with manual calculations, which enables us to judge the 

influence of the geometrical dimensions, the material properties, the possible overhangs and the 

fixation dimensions of the tool-holder system. 
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ABSTRACT
The simulation of beams with sliding joints is of interest for many different applica-
tions such as aerial runways or pantograph-catenary systems. However, classical dis-
cretization with Lagrangian finite elements cannot represent the geometry smoothly
over element boundaries, which leads to impacts at element boundaries. Therefore,
the isogeometric framework is applied to a director based formulation of the geo-
metrically exact beam formulation using non-rational B-Splines (NURBS) for the
discretization as NURBS can be used to represent many geometries smoothly and
exactly. An energy-momentum scheme is used for the time integration to obtain a
stable algorithm. Two methods are proposed to realize the sliding contact condition:
a classical approach using Lagrange multipliers and an approach based on the master-
slave concept applied in the framework of the discrete null space method.

Keywords: geometrically exact beams, sliding contact, null space method, energy-
momentum schemes

1 Introduction
The simulation of sliding contacts of two (or more) slender structures is of interest for many
different applications such as aerial runways or pantograph-catenary systems. Slender structures
can be simulated very efficiently using beam models. One of the most important beam models
in the non-linear analysis is the geometrically exact beam formulation (or Reissner-Simo beam
theory) [1, 2, 3]. The geometrically exact beam formulation allows arbitrarily large deformations
with finite strains, while the cross-section of the beam remains planar. The orientation of the
beam’s cross-section is often described using rotational variables. However, without additional
effort, the discretization of the rotations with finite elements is not frame-indifferent [4]. Thus, we
use a formulation based on directors, three orthonormal vectors, which describe the orientation of
the beam’s cross-section [5, 6, 7, 8].

Hamiltonian mechanical systems, such as beams, are based on the balance laws for linear and
angular momentum as well as the balance of energy in case of conservative loadings. However,
these conservation properties might not carry over to the discretized time domain. Especially, in
the case of nonlinear configuration manifolds, this might lead to physical impossible solutions
or numerical instabilities [9]. A remedy for this problem is the use of conserving integrators,
which preserve some of the structure of the continuous problem. A general approach on how
to construct such energy-momentum conserving integrators was shown by Gonzalez [9]. The
conserving time integration scheme, which preserves momentum and energy, for elastodynamics
was first proposed in [10]. In [11] Simo et. al showed the advantage of the energy-momentum
scheme over the conventional midpoint and trapezoidal rule when used for the geometrically exact
beam. Therefore, the energy-momentum scheme is applied to simulate the dynamic behavior of
the beam.

For the simulation of a sliding contact, it is essential to represent the geometry without any non-
physical kinks, which may arise due to the discretization. Otherwise, this leads to impacts at the
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kinks, which are not present in the continuous problem. A smooth representation of the geometry
is not possible if the classical isoparametric finite element method (FEM) in combination with
Lagrangian shape functions is used, as here no smooth representation over element boundaries is
possible. The isogeometric analysis (IGA) [12] can present a remedy for this problem. The IGA
can be used for an exact, smooth representation of the whole geometry. In the IGA framework the
functions, which are used to exactly display the geometry in computer graphics, are also used as
basis functions for the FEM discretization. Often non-uniform rational B-Splines (NURBS) are
applied for this purpose. NURBS are Cp−1 continues over element boundaries, where p is the
polynomial order of the shape functions.

It is the goal of the present work to achieve a contact algorithm, which adopts the conserving
property of the energy-momentum scheme. For this purpose, two methods to enforce the contact
condition are investigated: First, the more classical approach using Lagrange multipliers is stated.
The second approach relies on the master-slave concept [13, 14, 15, 16] which is applied within
the discrete null space method [17, 18, 19].

An outline of the rest of the paper is as follows. In Section 2 we give a very short summary on
the used NURBS basis functions. It follows a detailed description of the geometrically beam for-
mulation relying on directors in Section 3, along with an outline of the applied energy-momentum
scheme. The sliding contact condition is addressed in Section 4. Eventually, some conclusions are
drawn in Section 5.

2 Isogeometric Analysis
First introduced by Hughes et al. [20] in 2005, the IGA using NURBS was applied to a variety
of problems since then and has become it’s own field of research. The origin of NURBS basis
functions lies in computer graphics. A comprehensive introduction to the topic of NURBS can be
found in [21]. A NURBS curve is built from B-Splines. Each B-Spline function is defined through
a knot vector

Ξp =
[
0, . . .0︸ ︷︷ ︸

p+1

,ξp+2, . . . ,ξnele+p+1︸ ︷︷ ︸
nele−1

,1, . . .1︸ ︷︷ ︸
p+1

]
(1)

where the index p denotes the polynomial degree of the shape function and nele the number of
curve segments, which is equivalent to the number of elements in a FEM sense. Eq. (1) defines an
open knot vector, which is classically used in IGA. An open knot vector defines functions, where
the basis functions are interpolatory at the beginning (ξ = 0) and the end (ξ = 1). Using the knot
vector a B-Spline basis can be computed with the help of the Cox-de-Boor recursive algorithm
[21, 12]

Ni,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ )

(2)

where division by zero is defined as zero ( (•)0 := 0). The NURBS basis is constructed form

Rp
i (ξ ) =

Ni,p(ξ )wi

W (ξ )
=

Ni,p(ξ )wi

∑nCP
î

Nî,p(ξ )wî
(3)

where wi is the i-th weight. If all weights are set to one (wi = 1) the NURBS basis coincides with
the B-Spline basis defined above. With the control points Bi, where Bi ∈ Rd is the i-th control
point, a NURBS curve can be constructed

C(ξ ) =
nCP

∑
i=1

Rp
i (ξ )Bi (4)
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where nCP = nele + p is the number of control points. NURBS curves can be used to display many
common geometries exactly and smoothly.

3 Geometrically Exact Beam Formulation
Many different formulations for non-linear beams exist in the literature. The here presented for-
mulation follows closely the following publications [5, 6, 7, 8].

3.1 Beam Kinematics
The position of any point on the beam can be described by

x(s, t,θ 1,θ 2) =ϕϕϕ(s, t)+θθθ(s, t) =ϕϕϕ(s, t)+θ αdα(s, t) (5)

where s ∈ [s1,s2], with s1,s2 ∈ R, is referred to as the arc-length in the reference configuration.
θ i ∈R are convective coordinates (θ 1, θ 2, θ 3 = s). ϕϕϕ ∈R3 points to the centerline of the beam and
θ α gives the position on the cross-section. The Einstein notation for double indices is used. Note
that from now on indices with Greek letters run from one to two (α,β = 1,2), whereas indices
with Roman letters run from one to three (i, j,k = 1,2,3).

e1

e2

e3

d1
d2

d3

s

ϕϕϕ(t)

Figure 1. Configuration of the beam

Three directors di ∈ R3 are defined, where d1 and d2 span the cross-section area of the beam, and
d3 is defined by

d3(s, t) = d1(s, t)×d2(s, t) (6)

In the reference configuration at time t = 0 the director d3(s,0) is equivalent to the tangent of the
centerline d3(s,0) = ϕϕϕ,s (s,0). Here the abbreviation of the partial derivative ∂ (•)

∂ s is introduced.
The directors are mutually orthonormal for all t ∈ R, that is

di(t)⊗di(t) = I (7)

where I is the unit tensor. The relation between the orthonormal, Cartesian basis ei and the direc-
tors di can be expressed by

di = R(s, t) · ei (8)

where
R(s, t) = di(s, t)⊗ ei (9)

R ∈ SO(3) is an orthogonal tensor belonging to the special Euclidean group SO(3).

3.2 Constitutive Equations
We introduce two strain measures ΓΓΓ and K

ΓΓΓ = Γiei with Γi = di ·ϕϕϕ ,s−δi3 (10)

K = Kiei with Ki =
1
2

εi jk
[
dk ·d j,s− (dk ·d j,s)

∣∣
t=0

]
(11)

where εi jk is the Levi-Civita symbol. Both strain measures are invariant under rigid body move-
ments, which also carries over to the discretized measures as shown in [5]. We assume a Saint
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Vernant-Kirchhoff type material model, where the stored energy is given by the function w(ΓΓΓ,K).
We obtain the constitutive equations from

N̄ =
∂w(ΓΓΓ,K)

∂ΓΓΓ
and M̄ =

∂w(ΓΓΓ,K)

∂K
(12)

The total strain energy follows from

W =
1
2

∫ L

0
ΓΓΓ ·D1 ·ΓΓΓ+K ·D2 ·Kds (13)

with

D1 =




GA1 0 0
0 GA2 0
0 0 EA


ei⊗ e j D2 =




EI1 0 0
0 EI2 0
0 0 GJ


ei⊗ e j (14)

3.3 Kinetic Energy
The kinetic energy of the beam is given by

Ekin =
1
2

∫ L

0
ρ0(θθθ ,s)ẋ(s, t) · ẋ(s, t)dV

=
1
2

∫ L

0

[
Aρ ϕ̇̇ϕ̇ϕ(s, t) · ϕ̇̇ϕ̇ϕ(s, t)+2ϕ̇̇ϕ̇ϕ(s, t) · ḋαSα +Mαβ

ρ ḋα · ḋβ

]
ds

(15)

where Aρ(s) it the mass density per unit reference length

Aρ(s) =
∫

As

ρ0(θθθ ,s)dA (16)

with the density function ρ0(s). As(s) is the beam cross-section at s. The first moment of area is
computed from

Sρ(s) =
∫

As

ρ0(θθθ ,s)θθθ dA (17)

with the components Sα
ρ = Sρ · eα and the mass-moment of inertia of the cross-section is given by

Mρ(s) =
∫

As

ρ0(θθθ ,s)θθθ ⊗θθθ dA (18)

with the components Mαβ
ρ = Mρ :

(
eα ⊗ eβ

)

3.4 Constraints
Lagrange multipliers λλλ are introduced to enforce the orthonormality of the directors

λλλ (s, t) : [di⊗di− I] = λλλ (s, t) : ΦΦΦin = 0 (19)

where the constraints ΦΦΦin are given by

ΦΦΦin = di⊗di− I (20)

3.5 Virtual Work
Using the variations of the variables we obtain the variations of the strain measures as

δΓΓΓ = δΓi ei with δΓi = δdi ·ϕϕϕ ,s +di ·δϕϕϕ ,s (21)

δK = δKi ei with δKi =
1
2

εi jk
[
δdk ·d j,s +dk ·δd j,s

∣∣
t=0

]
(22)
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It follows, that the internal virtual work can be computed from

Gint(x,δx) =
∫ L

0
δΓΓΓ ·D1 ·ΓΓΓ+δK ·D2 ·Kds (23)

and the virtual work of the inertia terms is given by

Gkin(x,δx) =
∫ L

0
Aρ
(
ϕ̈̈ϕ̈ϕ(s, t)+ d̈αSα

)
·δϕϕϕ(s, t)+

(
Sα ϕ̈̈ϕ̈ϕ(s, t)+Mαβ

ρ · d̈β

)
·δdα ds (24)

The external loads, external forces and moments, result in the following virtual work expression

Gext(x,δx) =
∫ L

0
δΓΓΓ · N̄ext +δK ·M̄ext ds (25)

and the variation of the constraints leads to

Gcon(di,λλλ ,δdi,δλλλ ) =
∫ L

0
λλλ : G ·δdi +δλλλ : ΦΦΦin ds (26)

where
Gin = Grad(ΦΦΦin) (27)

From the principle of virtual work follows

Gint +Gkin−Gext +Gcon = 0 (28)

3.6 Finite Element Discretization
The displacements and directors are discretized in a finite element sense with NURBS shape func-
tions. In classical FEM the shape function chosen for the discretization of the Lagrange multipliers
coincide with Dirac deltas associated with the nodes [5, 7]. As the NURBS shape functions are not
interpolatory, this method can no longer be applied directly. Instead one can chose to discretize
the Lagrange multipliers with the NURBS shape functions. In [8] it is argued that the linear theory
indicates that different orders of shape functions for displacements as for directors and Lagrange
multipliers should be applied. They propose to use shape functions of the order pϕ −1 for the di-
rectors and Lagrange multipliers, where pϕ is the order of the shape functions applied to discretize
the displacements. However, a proof for the optimal discretization is not given.
Under the assumption of the arbitrariness of the test functions we obtain the following time-
continuous system of differential algebraic equations (DAE’s)

Mq̈+∇∇∇V (q)+Gin
>λλλ= fext (29)

ΦinΦinΦin (q) = 0 (30)

where q contains the values of the control points of the displacements and directors and λλλ contains
the values of the Lagrange multipliers.

3.6.1 Initialization of Directors
In the IGA the control points, which correspond to the degrees of freedom, in general do not lie
inside the physical domain. The quantities inside the physical domain are given by the linear
combination of the values on the control points multiplied with the shape functions. The non-
interpolatory nature of the shape functions has to be taken into account in the definition of the
directors in a preprocessing step. An algorithm, where the directors in every integration point are
used to compute the directors on the control points is introduced in [22]. We use the proposed
algorithm. The directors of the beam at the Gauss points are given by

dh
i(sGP) =

nCP

∑
j=1

Ni(sGP)d j
i,CP (31)
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where dh
i (sGP) are the discretized directors on the Gauss points and dA

i,CP the directors on the
control points. Note that s can be used interchangeably with ξ . Eq. (31) can be written in matrix
notation

dGP
i = NdCP

i (32)

where N has the dimension of (nGP ·nel×nCP). nGP is the number of Gauss points per element and
nel the number of elements. By multiplying with N> we obtain the following normal equations

N>dGP
i = N>NdCP

i (33)

The matrices N>dGP
i and N>N can be assembled element wise. The values of the director vectors

on the control points follow than from

(N>N)−1N>dGP
i = dCP

i (34)

3.7 Numerical Objectivity Test

e1

e2

e3
F

R = 100

π
4

Figure 2. 3D cantilever bend

Geometrically exact beam formulations based on a discretization of rotations may suffer from a
lack of objectivity, if the discretization is not performed with great care [4]. To show that the pre-
sented formulation does not suffer from this problem the following example from [5] is simulated.
A 3D cantilever bend as shown in Fig. 2 is investigated. The stiffness properties of the beam are
GA1 = GA2 = 5 ·106, EA = 107 and EI1 = EI2 = GJ = 1

12 ·107. As shown the cantilever is fixed
at one end. On the other end of the beam the force F =

[
F1, F2, F3

]
ei acts. The force is applied

in increments of ‖∆Fi‖ = 25. In Table 1 the load cycle is shown in detail. The Newton-Raphson
solver is considered converged for a Euclidean norm of ‖g‖ ≤ ε = 10−7 of the residual g. In Table

Table 1. Load cycle and tip displacement ϕϕϕ · e2 of the 3D cantilever bend

Load levels polynomial order[
F1, F2, F3

]
p = 1 p = 2 p = 3

[
0 0 0

]
0 0 0[

−600 0 0
]

0 0 0[
−600 600 0

]
61.9106 59.9274 58.9219[

−600 600 600
]

40.1867 38.2493 37.7772[
0 600 600

]
37.9928 36.2738 36.7271[

0 0 600
]

� ε � ε � ε[
0 0 0

]
� ε � ε � ε

1 the displacement of the tip in the direction of e2 is presented. After the whole load cycle is com-
pleted the configuration has to coincide with the initial configuration again. The cantilever bend
is discretized with 8 beam elements. The simulations are conducted for polynomial orders from
p = 1 to p = 3. All results are in good agreement with [5]. It can be seen that the displacement in
direction of e2 is zero in a numerical sense at the end of the load cycle and, thus, coincides with
the initial configuration as expected.
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3.8 Time Discretization
As described in Sec. 1 it is of great advantage to use an energy-momentum scheme in combination
with geometrically exact beams. Using the energy-momentum scheme described in [19] the fully
discretized DAE for the geometrically exact beam reads as

Man+ 1
2
+ ∇̄̄∇̄∇V (qn,qn+1)+Gin

>
(

qn+ 1
2

)
λλλn+1 = 0 (35)

ΦΦΦ(qn+1) = 0 (36)

where

qn+ 1
2
=

1
2
(qn +qn+1) (37)

vn =
2
∆t

(qn−qn−1)−vn−1 (38)

an+ 1
2
=

2
∆t2 (qn+1−qn)−

2
∆t

vn (39)

∆t is the time step and qn the nodal values at time n∆t, and qn+1 the nodal values at time (n+1)∆t
respectively (analogous for λλλn+1). ∇̄̄∇̄∇f is called the discrete gradient of a function f. According to
Gonzalez [9] it has to fulfill the following properties to inherit the symmetry properties (concerning
linear and angular momentum and energy) from the continuous problem

• directionality condition

∇̄̄∇̄∇f(qn,qn+1)(qn+1−qn) = f(qn+1)− f(qn) (40)

• consistency condition

∇̄̄∇̄∇f(qn,qn+1) = ∇̄̄∇̄∇f
(

qn +qn+1

2

)
+O (‖qn+1−qn‖) (41)

In case of a quadratic strain energy function the discrete gradient uses the average of the strains
and not the average of the configurations such as with the midpoint rule [10].

3.8.1 Beam with Concentrated Masses
In Fig. 3 the initial configuration of a beam with concentrated masses is shown. This problem is
taken from [6]. The beam has a length of 2L, where L = 1m. At both ends as well as in the middle
of the beam concentrated masses are added with M = 10kg and m = 1kg. The beam itself has a
mass density per unit length of Aρ = 0.27 kg

m and a mass-moment of inertia of the cross-section
of Mρ = 9 · 10−8 kg

m . The beam stiffness parameters are given as EI = 2.43Nm2, GJ = 586Nm2,
GA = 2.43 ·106 N and EA = 7.3 ·106N.

e1

e2

e3

M m M

F1 F2

L L

Figure 3. Initial configuration of the beam with concentrated masses.

The system is exited by two time-dependent external dead loads F1 and F2

Fα = Pα f (t) P1 =−1Ne1−3Ne3

P2 = 2Ne1 +4Ne3
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The time-dependent function f (t) is given by

f (t) =

{
1
2

(
1− cos

(2πt
T

))
for t ≤ T

0 for t ≥ T

where T = 3s. The simulation results for the angular momentum L =
[
L1, L2, L3

]
ei and the
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Figure 4. Angular momentum and energy over time for the beam with concentrated masses.

energy of the system are shown in Fig. 4. A constant time steps size of ∆t = 1 · 10−2 s is used
and the beam is discretized with 22 linear elements. All results are in very good agreement with
[6]. It can be seen very easily, that for t > T the component L2 in e2-direction of the angular
momentum is constant (both other components are zero for all t). The same effect can be found
when considering the total energy of the system. It is constant, after all external loads are set to
zero.

4 Sliding Joint

e1

e2

e3

ϕϕϕ(t) :

A

B

ϕϕϕ(B1)

ϕϕϕ(B2)

ϕϕϕ(t)+ εδϕϕϕ(t) :

A

B

ϕϕϕε(B2)
εδϕϕϕ(A1)

ϕϕϕε(B1)

δ s

Figure 5. Sketch of two beams with sliding contact without and with pertubation.

We assume that two beams, A and B, are in contact at one point in the deformed configuration
ϕϕϕ(t) as shown in Fig. 5. We make the following assumptions describing the physical system

1. The material point A1 on beam A is always in contact with beam B, whereas the contact
point on beam B may change over time. Beam A , therefore, slides along beam B

https://doi.org/10.3311/ECCOMASMBD2021-181

143



2. The assumption of a frictionless contact is made. Thus, the contact forces act only in normal
direction

NI = nI‖NI‖ where I = A1,B1 (42)

where the subscribed A denotes that the variable belongs to beam A and the subscribed B denotes
that the variable belongs to beam B. From those assumptions the constraints for a spherical sliding
joint follow as

ΦΦΦex (qn) =

[
(ϕϕϕA(A1)−ϕϕϕB(B1)) ·n1
(ϕϕϕA(A1)−ϕϕϕB(B1)) ·n2

]
(43)

The local normal vectors nα are given by

t =
ϕϕϕB,s|s=sc

‖ϕϕϕB,s|s=sc‖
(44)

n1 =
ϕϕϕB,ss|s=sc

‖ϕϕϕB,ss|s=sc‖
(45)

n2 = n1× t3 (46)

where sc is the arc-length of beam B, which is closest to the point of contact of beam A . Here
the assumption is made that beam A is in contact at the last control point at sA = 1. sc has to be
determined in each time step. An efficient algorithm for this task can be found in [21].

4.1 Null Space Method
A transformation of a system of DAE’s to a system of ordinary differential equations (ODE’s)
can be achieved using the so-called null space projection [17]. A general constrained mechanical
system is governed by a system of equations of the following form

Mq̈+∇∇∇V (q)+G>(q)λλλ= 0

ΦΦΦ(q) = 0
(47)

where q ∈ Ru are the redundant coordinates and λλλ ∈ Rv are the Lagrange multipliers. By multi-
plication with a null space matrix P, from the null space of the gradient G, the constraint forces
(G>(q)λλλ) can be can be eliminated from Eq. (47), as GP = 0. When additionally a mapping
F(u) = q from U ∈ Ru−v to Q ∈ Ru is introduced, the DEA can be rewritten into an ODE

P> [Mq̈+∇∇∇V (q)] = 0 (48)

An approach similar to the null space projection, called master-slave approach, was developed to
simulate various joints between beams [13, 14, 15, 16]. Here, the null space matrix is constructed
through geometrical reasoning without the introduction of constraints. The contact condition for a
sliding spherical joint in a perturbed configuration (see Fig. 5) is given by

ϕϕϕε(A1) =ϕϕϕε(B2) (49)

Thus, the virtual displacement δϕϕϕ(A1) can be expressed as

δϕϕϕ(A1) =
d

dε
∣∣
ε=0ϕϕϕε(A1) =

d
dε
∣∣
ε=0ϕϕϕε(B2) =ϕϕϕ ,s(B1)δ s+δϕϕϕ(B1) (50)

where δ s is the variation of the arc-length. After discretizing the displacements and directors in a
finite element sense, the virtual displacements can be written as

δqn = Pexδqh (51)
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where the virtual displacements δqh ∈ R12(a+b)−2 are given by

δqh =
[
δq1

A, . . . , δqa−1
A , δ s, δdn

A, δq1
B, . . . , δqb

B

]> (52)

a is the number of control points of beam A , respectively, b is the number of control points of
beam B. The null space matrix Pex ∈ R(12(a+b))×(12(a+b)−2) is thus given by

Pex =




I12
. . .

I12

F̂B1 I3Nmcp(sc) · · · I3Nmcp+p+1(sc)
I9

I12
. . .

I12




(53)

where

F̂B1 =
mcp+p+1

∑
i=mcp

Ni,s(sc)ϕϕϕ i (54)

and I12 ∈ R12×12 is the identity matrix (I9 ∈ R9×9 and I3 ∈ R3×3, respectively). The index i runs
from mcp to mcp+p+1, thus including all relevant shape functions and control points of beam B to
display the displacement ϕϕϕB(B1) at sc.
The reparametrization of the sliding joint contact is given by

F(u) =




q1
nA +u1

A
...

qn−1
nA +ua−1

A

∑mcp+p+1
i=mcp

Ni(scn+1)
(
ϕϕϕ i

nB +uϕ
i
B

)

dn
nA +udAa

q1
nB +u1

B
...

qm
nB +ub

B




(55)

where u(•)
�© is the incremental displacement of control point (•), variable � and beam©.

So far the null space matrix Pex is time continuous. Two conditions for the discretized null space
matrix are given in [18]

1. For time steps ∆t→ 0 the discrete matrix has to coincide with the continuous one

P(qn,qn+1)→ P(qn) as qn+1→ qn (56)

2. It is further required that
G(qn,qn+1)P(qn,qn+1) = 0 (57)

Taking into account the above conditions the discrete null space matrix Pex(qn,qn+1) pertaining to
the (external) sliding constraints can now be devised as discrete version of (53).

Note that the internal constraints associated with the orthonormality of the directors still need
to be taken into account to complete the discrete null space method. To this end, an additional
null space matrix Pin can be applied. Furthermore, the reparametrization F(u) needs be adjusted
appropriately. These additional steps required to complete the discrete null space method can be
found in [19] for the geometrically exact beam based on a director formulation.
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5 Conclusion / Outlook
A short introduction of the used NURBS shape functions is given in Sec. 2. The shape functions
are implemented into the well-known geometrically exact beam theory. A description based on
directors is hereby used as described in Sec. 3. The orthonormality of the directors is only enforced
in a weak sense. The objectivity of the implemented formulation is shown in the 3D cantilever bend
example. For the time discretization an energy-momentum scheme is employed. The conervation
properties of the scheme are shown in the example of the beam with concentrated masses.
Two algorithms for the sliding spherical joint are introduced. Both are expected to be energy and
momentum-conserving. The accuracy of both algorithms and their conserving properties has still
to be proven on numerical examples.
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ABSTRACT

Robotic machining is a fast-growing technology in the field of mechanical manu-
facturing. Indeed, it is generally accepted that for the same working space, a fully
equipped robotic machining cell can cost 30 to 50 % less than a conventional machine
tool. However, inaccuracies resulting either from vibrations or deflections occur while
the robot is subjected to cutting forces, inherent to its flexible structure. As an order
of magnitude, the stiffness at the tool-tip is about 1N/µm for industrial robots against
more than 50N/µm for CNC machine tools. The flexibility source has been investi-
gated and appears to be caused by the robot articulations in a proportion of 80% while
the remaining flexibility issues from the structural elasticity. In order to improve the
accuracy of robotic machining operations, several approaches have been carried out
such as the study of stable cutting conditions and the online/offline compensation of
the tool trajectory.

Two aspects of the operation must be modeled, on the one hand the model of the
cutting machine, being an industrial robot in robotic machining, and on the other hand,
the machining model including the resulting geometry of the workpiece. A coupled
model is then proposed with the multi-body model of the robot subjected to machining
forces. The multi-body model includes the flexibility induced by the structure and the
articulations. In order to compensate the deviations, a solution is proposed where the
trajectory is discretized in nodes with a compensation taking the system dynamics into
account by successive simulations of the operation. The algorithm involves two steps,
firstly it aims to detect critical locations of the path and add or reposition nodes to
reduce the deviation and secondly an optimization layer modifies nodes positions and
velocities for a finer reduction. The method is deployed for three systems of increasing
complexity for a face milling operation, showing a machining error reduction.

Keywords: Robotics, dynamic simulation, trajectory optimization, coupled models.

1 INTRODUCTION
Robotic machining is a fast-growing technology in the field of mechanical manufacturing. Indeed,
it is generally accepted that for the same working space, a fully equipped robotic machining cell
can cost 30 to 50% less than a conventional machine tool. Furthermore, robotic machining enables
an interesting agility in the cutter motion to deal with complex workpieces geometry. However,
inaccuracies resulting either from vibrations or deflections occur while the robot is subjected to
cutting forces. As an order of magnitude, the stiffness at the tool-tip is about 1N/µm for industrial
robots against more than 50N/µm for CNC machine tools [1].

The causes of these issues are numerous and have been identified then classified according to their
nature [2]. Among the deviations sources, a major contribution appears to be the flexibility of the
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robot, caused by its articulations in a proportion of 80% while the remaining flexibility issues from
the structural elasticity of the links [3].

In order to improve the accuracy of robotic machining operations, several approaches have been
carried out such as the study of stable cutting conditions and the online/offline compensation of
the tool trajectory [2]. Within the frame of industry 4.0 and the concept of virtual twin, offline
models can be developed in order to predict instabilities and compensate deviations. However,
for the offline compensation, it is necessary to model both aspects of the operation, on the one
hand the model of the cutting machine, being an industrial robot in robotic machining, and on the
other hand, the machining model including the resulting geometry of the workpiece [4]. Offline
compensation methods are closely related to modeling of the robot flexibility. The static deflection
is directly computed from the identified stiffness matrix and the estimation of the milling forces.

The existing models mostly locate the flexibility at the articulations (precisely in the gearbox and
bearings) and at links (presenting significant bending depending on their shape). Several offline
compensation approaches are developed in the literature depending on the parameters chosen for
the flexibility modeling [2]. These approaches propose to determine an equivalent torsional stiff-
ness value at the articulation and to use it to calculate the corresponding deflection of the tool
center point [5, 6].

The more sophisticated the flexibility modeling the better the static deflection evaluation, with for
example a complete identification at the articulation level [5] or with simpler torsional model such
as the virtual joint modeling approach [7]. In each case, an equivalent stiffness value is computed
(with for example the Conservative Congruence Transformation [8]) and used to calculate the
corresponding static deflection of the tool center point [1]. This deflection is used to shift the
initial trajectory, also called the mirroring method [9].

Even though the stiffness-based deviation estimation presents a important error reduction, the
dynamic deflection has not been addressed [4] and may cause non-negligible deviations. The dy-
namical behavior is significant at different moments of the operation for example when the tool
enters or leaves the matter or even while performing small amplitude back and forth movements
(changing the direction of motors torques) [10].

The optimal trajectory generation for underactuated flexible robots is an active research topic
where optimal trajectory generation and control are central issues [11]. However, the perturba-
tions generated by machining forces make these algorithms complex to apply in our context. An
other reason requiring dynamic models is the presence of damping. It has indeed been shown that
the articular flexibility modeling is improved by adding a damping contribution [3].

A robot performing a machining operation can be considered as a multibody chain with perturba-
tion forces applied on the tool center point (TCP). In order to be able to simulate 5-axis operations,
it is necessary to include a machining force module that can compute these forces from the tool
motion. Concerning the modeling of machining operation, several approaches exist depending
on the expected inputs of the simulation [12]. The most appropriate candidates for time-based
simulation of 5-axis operations where the cutting forces and workpiece geometry are needed at
each time-step are the voxel and the dexel approaches [12]. Models based on voxels have been
developed for model-based compensation [6]. However, the complexity of voxel model is up to
O(n3) against O(n2) for dexel. Besides, for 2.5D operations, the stack of slices approach is faster
and reliable [13].

This paper first describes the flexibility model of the robot. Afterwards, the repositioning algo-
rithm is presented and applied on several multibody systems. Three models of increasing com-
plexity are addressed. In the first place, a minimal case, being the tool-mass body fixed with linear
spring/damper to a support whose motion is prescribed, is studied. Afterwards, non-linear robots
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are a two-degree-of-freedom robot and the machining robot Stäubli TX200, with the introduction
of torsional spring/damper pairs at the articulations to model the flexibility. The repositioning of
the trajectory nodes is improved with an optimization layer considering nodes positions and veloc-
ities as design variables. Perspectives are discussed for the development, refinement and extension
for 5-axis operations of the proposed method.

2 MULTIBODY DYNAMIC MODEL
The equations of motions for a multiple-degree-of-freedom mechanical system are expressed as
follows

Mq(q)q̈(t)+hq(q, q̇) = F(t) (1)

where Mq(q), hq(q, q̇) and F(t) are defined in generalized coordinates, according to the virtual
power theorem, with equations (2,3,4), where Mq(q) the mass matrix, hq(q, q̇) the vector gathering
the Coriolis, gyroscopic and centrifugal forces and F(t) the vector of external forces applied on the
system are expressed in terms of the generalized coordinates q according to equations (2) to (4).
The vector q regroups the actuated degrees-of-freedom qa and the unactuated degrees-of-freedom
qu.

Mq(q) =
nB

∑
i=1

(
mi[JS,i]

T
Base · [JS,i]Base +[Jω,i]

T
Base ·RBase,i · [ΦG,i]i ·RT

Base,i · [Jω,i]Base
)
. (2)

hq(q, q̇) =
nB

∑
i=1

(
mi[JS,i]

T
Base · [J̇S,i]Base +[Jω,i]

T
Base ·RBase,i · [ΦG,i]i ·RT

Base,i · [J̇ω,i]Base
)

q̇

+[Jω,i]
T
Base ·

(
{ωi}Base×RBase,i · [ΦG,i]i ·RT

Base,i · {ωi}Base
)
.

(3)

Fq =
nB

∑
i=1

(
[JS,i]

T
Base · {Ri}Base +[Jω,i]

T
Base · {MG,i}Base

)
, (4)

where the subscript Base refers to the base frame, [JS,i]Base and [Jω,i]Base are the translational and
rotational Jacobian matrices of body i expressed in the base frame.

To model the gearbox flexibility, unactuated degrees-of-freedom are introduced at the articulation,
allowing a deflection introducing elastic and damping action/reaction torques on the bodies on
either side of the articulation. The torques between body i and j are expressed by

{MG,i}Base =−
(
kqu,l ·qu,l +dqu,l · q̇u,l

)
·RBase,i ·ul (action),

{MG, j}Base =
(
kqu,l ·qu,l +dqu,l · q̇u,l

)
·RBase,i ·ul (reaction)

(5)

where kqu,l and dqu,l are respectively the torsional stiffness and damping of the articulation along
local axis l.

The machining forces are computed considering the mechanistic approach [14]. Theses forces are
computed as the sum of elementary contributions along the tool axis as follows:

Fα =
ns

∑
k=1

Kα,c.h.dz+Kα,e.ds (6)

with h the uncut chip thickness, dz the height of the elementary slice, ns the number of tool slices
[14], α = t,r,a the tangential, radial and axial directions respectively, Kα,c and Kα,e the cutting
coefficients and ds the local cutter edge length. The forces are then applied on the TCP. Their
computation is the result of the coupling of two simulators, on the one hand EasyDyn, an in-house
multi-body solver and on the other hand DyStaMill, an in-house solver as well, dedicated to the
simulation of machining operations [13].
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The global block diagram of the correction is shown in Fig. 1. The system is controlled with an
inverse dynamic controller [15] in which Mq(q),hq(q, q̇),Fq are computed with the rigid model of
the robot in order to provide the assumption that the robot controller is not aware of the flexibility.
The Cartesian trajectory [pt ṗt p̈t ]

T is first transposed in the joint space [qt q̇t q̈t ]
T with second

order inverse dynamics, also based on a hypothetical perfectly rigid robot, and tracked with the
controller generating the motor torques [u1,t . . .undo f ,t ]

T . The aim of this architecture is to reproduce
the conditions where the inner controller of the robot is not accessible and the input is the trajectory
sent to the system.




pInit
ṗInit
p̈Init




t0−→t f EoM
(FM)

IDC
(RM)

Trajectory
Correction

DK
(FM)




pTCP
ṗTCP
p̈TCP




t0−→t f

Final
Workpiece

[
pmod ṗmod p̈mod

]T
t0−→t f

2ndIK
(RM)




pt
ṗt
p̈t







qt
q̇t
q̈t







u1,t
...

undo f ,t







pTCP,t
ṗTCP,t
p̈TCP,t




Figure 1: Block diagram of the off-line operational trajectory correction. With IK: Inverse
Kinematics, IDC: Inverse Dynamics Controller, EoM: Equations of Motion, DK: Direct Kine-
matics, RM: Rigid model, FM: Flexible Model. The initial trajectory based on the G-code is
[pInit ṗInit p̈Init ]

T
t0−→t f

. The simulated TCP position is [pTCP ṗTCP p̈TCP]
T
t0−→t f

and the corrected
trajectory [pmod ṗmod p̈mod ]

T
t0−→t f

.

3 DEVIATIONS COMPENSATION
The trajectory is discretized by nodes Hi between which an Hermite interpolation is carried out.
Each node includes a homogeneous transformation matrix and velocity requirements for the TCP.

Hi =

[
Rn,i pn,i

0 1

]
, Ḣi =

[
ωn,i vn,i

]
(7)

where Rn,i the rotation matrix of node i whose z axis correspond to the tool orientation, pn,i the
TCP position, ωn,i and vn,i the rotational and translational velocities respectively.

The aim is to model the trajectory using a minimal number of nodes. The first step of the com-
pensation method is to detect the areas where the deviation is problematic in order to act on the
existing nodes position to reduce the machining error and possibly place additional nodes. A first
correction is carried out using the mirroring approach for each node, which consists in applying at
the trajectory nodes the error between the actual TCP position and the node position. This correc-
tion intends to compensate mainly the deviations from static forces, such as the impact of gravity
on the structure.

Afterwards, the operation is simulated to determine the deviation at each time step. A correction is
then applied on the nodes having an impact on the machining, i.e. the nodes surrounding trajectory
sections where the robot is milling. The updated trajectory is the input for the following simulation.
This correction is computed as the mean machining error caused for the upcoming path section,
meaning that the node i is replaced depending on the machining error accumulated in path section
i −→ i+ 1. The deviations of a dynamical nature are thus taken into account since this error is
computed with the system response from the integration in time of the equation of motions. The
trajectory H is updated at each iteration k with the modified position of the nodes Hmod. It allows
to anticipate the deviation, in particular for the entry, and accept to deviate from the ideal trajectory
while the TCP is outside the matter if it is in the interest of reducing the machining error.
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Once the nodes have been repositioned at best, the global machining error is compared to a thresh-
old and if the gap is still too important, a node is added in the critical position, being the location
presenting the highest deviation. Finally, when the error is under the threshold, the trajectory is
sent to the optimization layer where, in addition to the position, the velocity at each of the nodes
will be considered as a design variable. The node-repositioning algorithm is presented in Fig. 2.

Trajectory Nodes File

Detection of mat-
ter entry and exit &

Addition of nodes sur-
rounding these phases

Mirroring:
pn,i ←− pn,i− (pti − pt,ti)

Simulation of the pro-
cess with compensation:

pk+1
n,i,mod ←− pk

n,i −∑ j=ti+1
j=ti emilling, j

emilling < εnnodes < nnodesmax

Update trajectory
Hk+1 ←− Hk+1

mod

Add nodes at
critical position

To optimization layer

No

No

Yes

Yes

Figure 2: Trajectory nodes repositioning algorithm.

4 TRAJECTORY NODES OPTIMIZATION
Once the nodes have been replaced based on successive simulations of the dynamical system, a
finer result can be obtained by acting on the velocity vn,i as well as the position pn,i of the nodes
linked to the machining. The optimization problem is given in the following equation:

min
pn,i,vn,i,pn,i+1,vn,i+1

cost =
N

∑
k=0
‖pTCP−pt‖2

2 · γk (8)

where the parameters are successive nodes (ni,ni+1) positions and velocities, pTCP is the tool
center point position, pt the ideal path and γk is a weighting factor equal to 1 while machining and
0 else where and N is the number of observation points, i.e. the number of time steps to simulate
the process from t0 to t f . In order to reduce the design variables research horizon and remain
in feasible areas, boundaries [xl ; xu] are imposed by logarithmic barrier transformation tr(x) as
presented in Eq. 9. As stated before, a deterministic method is preferred, hence quasi-Newtonian
l-BFGS is selected.

tr(x) = ln(x− xl)− ln(xu− x)

tr−1(y) =
eyxu + xl

1+ ey

(9)

For the sake of readability, the legend of the curves used in Figs. 4a,5,7a,8 and 9b is detailed and
kept along the paper. The red dashed line with circles ( ) represents the trajectory sent to the
system and the without symbol one ( ) gives the system response. The blue dashed line with
triangles ( ) shows the trajectory after the node repositioning algorithm and the corresponding
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tool motion without symbols ( ) .The final compensated trajectory sent to system is presented
with the green dashed line with squares ( ) and the full line ( ) represent the final tool mo-
tion. Finally, the dotted line ( ) line shows the moments the tool enters and leaves the matter.

The machining operation performed by the aforementioned systems is the face milling of a Al6060
block with a flat-end mill of diameter Dtool = 10 mm with 2 teeth presenting a 30◦ helix angle in
half-immersion over a cutting dept of 2 mm. The spindle rotation speed is 11250 RPM for a feed
per tooth of 0.13 mm/tooth. The trajectory is limited to a single pass along the y axis. The nodes
added are then the ones surrounding the entry and exit and one at the middle of the part (since the
section with the highest error is between entry and exit).

4.1 Tool mass system
In the first instance, the node replacement with optimization layer has been carried out for the
simplified tool-mass model represented in Fig. 3. This system is composed of a mass connected
to a support with a pair of spring/damper along the x and y directions. The motion of the support
is imposed by the trajectory. The inertia parameters as well as stiffness and damping values were
chosen such as the tool-mass exhibits a rather similar deflection behavior than the TX200 for this
kind of machining operations which results in M = 200kg, k = 100kN/m and c = 4kN.s/m.

y

x c

c

k

k

ω
v

vnom

Figure 3: Simplified system, consisting of a tool attached, through spring-damper pairs, to a sup-
port moving along y direction and machining a workpiece in half-immersion.

The result of the repositioning algorithm and the optimization of the nodes positions and velocities
is presented in Fig. 4a, where the amplitude of the error is already strongly reduced in the milling
area with the first compensation stage ( ). The optimization layer managed to reduce the ampli-
tude of the gap at the entry and exit as shown in Fig. 5. The evolution of the cost function along
the corrections is displayed in Fig. 4b. The optimization layer does not bring strong improvement
since its contribution is mainly located around the entry and exit.

4.2 Two degree of freedom flexible system
The second system implemented is a two-degree-of-freedom system with additional flexibility at
the articulations presented in Fig. 6. This model introduces coupling between q1 and q2 and non-
linearity between the task space and the operational space since the actuated degrees of freedom
are the joints angular positions. The first body (s1) is linked to the ground through the motor
where the gearbox flexibility is modeled by a torsional spring-damper pair (Eq. 5). The motor
actuating the second link s2 is located at the tip of s1, with the gearbox flexibility modeled in the
same way. The unactuated degrees-of-freedom representing the articular deflection are gathered
in qu =

[
q3 q4

]T . An additional mass s3 is placed at the tip of the body s2 in order to represent
the equivalent charge of the spindle. Just as the tool-mass model, the machining operation is the
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Figure 4: (a) Evolution of the tool trajectories along x direction throughout the correction proce-
dure for the tool-mass system. Legend is given in Sec. 4. (b) Evolution of the cost function. The
line ( ) symbolize the demarcation between the node repositioning and the optimization layer.
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Figure 5: Close-up views of the trajectories for the tool-mass system presented in Fig. 4a for entry
(a) and exit (b) of matter.

surface milling in half-immersion of the tool along the y axis. The inertia properties are chosen to
behave the same way as the machining robot does.

 

 

x

−y

z

q1

q2

q3

q4

q1 +q3

q2 +q4

s1

s2

s3

k
k

d
d

Figure 6: Two actuated degrees-of-freedom system with articular flexibility. Solids s1 and s2 are
the robot links and s3 is a mass supporting the tool. The articular flexibility is represented by the
deflections q3 and q4 with the torsional springs and dampers k and d.
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Similarly to the tool-mass model, the tracking error is reduced within the machining part of the
trajectory. The compensated and final trajectories are shown in Fig. 7a and the evolution of the
cost value in Fig. 7b. The anticipation of the deviation at the entry and exit resulting from the
optimization layer is emphasized in Fig. 8.
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Figure 7: (a) Evolution of the tool trajectories along x direction throughout the correction pro-
cedure for the two-degree-of-freedom system. Legend is given in Sec. 4. (b) Evolution of the
cost function for the trajectory correction of the two-degree-of-freedom system. The line ( )
symbolize the demarcation between the node repositioning and the optimization layer.
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Figure 8: Close-up views of the trajectories presented in Fig. 4a for entry and exit of matter.

4.3 Anthropomorphic Robot
The anthropomorphic robot studied in this work is the TX200 from Stäubli illustrated in Fig.9a.
The multibody system includes is the result of the complete identification of the flexibility, with
the tri-axial torsional flexibility model [3]. Additional degrees of freedom are then induced at the
articulations and links, leading to a multiple-degrees-of-freedom system composed of six actuated
degrees-of-freedom qa =

[
qa,1 . . .qa,6

]
and 34 others qu, modeling the deflections [16]. The tri-

axial method consists in three torsional spring/damper pairs consecutively connected after the
gearbox and oriented along each of the three local frame directions. The unactuated degrees-of-
freedom at the second joint qu,2 (qx,2, qy,2, qz,2) thus represent the joint deflections and lead to
the following formulation of the Body 2 center of mass (GBody 2) location with respect to the base
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(OBase) on which the robot is mounted

HOBase,GBody 2 =HOBase,OBody 2 ·Hrotz(qa,2) ·Hrotz(qz,2)·
Hrotx(qx,2) ·Hroty(qy,2) ·HOBody 2,GBody 2 .

(10)

Similarly to the two-degree-of-freedom planar robot detailed in Section 4.2, the rigid model of the
robot is used for the inverse dynamics controller as well as the second order inverse kinematics
(Fig. 1). As well as the previous systems, the robot is machining along the y direction, maintaining
the x position constant. The evolution of trajectories along the x direction is presented in Fig. 9b. At
the exit, the dynamic deflection is well compensated however the contribution of the optimization
for the entry is rather small. It can be improved by changing the weighting of the entry section in
the definition of the cost function.
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Figure 9: (a) Representation of the multibody modeling of a Stäubli TX200 robot dedicated to
machining. For readability reasons, the articular flexibility is only explicitly shown for the third
joint. (b) Evolution of the tool trajectories along x direction throughout the correction procedure
for the TX200 robot model. Legend is given in Sec. 4.

5 PERSPECTIVES
As a perspective of development, a stronger contribution can be given to the optimization part. A
refinement of the cost function is to be considered, where, instead of using the accumulated posi-
tioning error obtained by the comparison of trajectories, the difference between the ideal workpiece
(in a dexel form) and the workpiece resulting from the simulation is proposed. The importance is
centered on the realization of the expected workpiece and no longer on the accomplishment of a
trajectory. Since the machining is preferred at constant velocity for stability and surface quality
reasons, a penalty in the norm of the TCP velocity may be added. The improved cost function is
presented as follows :

J =
Nx

∑
i=0

d∆,x,i +
Ny

∑
j=0

d∆,y, j +
Nz

∑
k=0

d∆,z,k +
Nt

∑
l=0

γl · ‖vTCP,sl −vTCP,tl‖ ·dt (11)

where d∆,x,i represents the difference between the dexel i along the x axis obtained from the sim-
ulation with the corresponding one from the ideal workpiece. The illustration of the difference
between dexels workpiece in given in Figure 10. The time code of the trajectory nodes can be
included in the design variables set in order to enable the nodes to be more moving.

Furthermore, a balance between the two correction layers (node-repositioning/introduction and
optimization) to define an optimal amount of nodes to be added for a sufficient pre-compensation.
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Figure 10: Determination of difference between the ideal workpiece and the resulting workpiece
from the dynamic simulation.

Finally, further investigation and tests are being considered for complex multibody systems, such
as the TX200 robot model, to challenge the proposed method. For such applied case, experimental
validation is planned. The dexel approach opens the perspective of more complex trajectories to
be simulated [17], the deployment of the method is intended for 5-axis operations.

6 CONCLUSIONS
Robotic machining is a growing technology but suffers from the lack of accuracy for hard-material
machining, mainly caused by the overall structure flexibility. An in-dept studies of the phenomena
allowed to model the flexibilities. Using these models, it is then possible to estimate, up to a
certain accuracy, the deflections at the tool-tip caused by the machining forces. Within the frame
of Industry 4.0, these models are virtual twins of the operation, and can be used to predict the
behavior of the robot as well as the result. The machine models can be expressed as under-actuated
multibody systems, where some degrees-of-freedom are the articulations and others represents
deflections.

This article presents a method taking advantage of such models to build a tool trajectory, expressed
in the operational space, anticipating the deviations from static and dynamic nature while subjected
to machining forces. The method is employed on under-actuated multibody systems of increasing
complexity with flexibility. The reduction of the deviation can be improved by varying the cost
function as well as the amount of added nodes. For more complex systems as the one presented,
the simulation time becomes a constraint since the optimization layer requires several iterates to
propose improvements.

ACKNOWLEDGMENTS
The authors would like to acknowledge the Belgian National Fund for Scientific Research (FNRS-
FRS) for the grant allotted to V. Dambly.

REFERENCES
[1] Kim, S.H., Nam, E., Ha, T., Hwang, S.H., Lee, J., Park, S.h., Min, B.K.: Robotic machining:

A review of recent progress. International Journal of Precision Engineering and Manufactur-
ing 20 (08 2019)

[2] Verl, A., Valente, A., Melkote, S., Brecher, C., Ozturk, E., Tunc, T.: Robots in machining.
CIRP Annals (06 2019)

https://doi.org/10.3311/ECCOMASMBD2021-139

157



[3] Huynh, H.N., Assadi, H., Dambly, V., Rivière-Lorphèvre, E., Verlinden, O.: Direct method
for updating flexible multibody systems applied to a milling robot. Robotics and Computer-
Integrated Manufacturing 68 (04 2021)

[4] Reinl, C., Friedmann, M., Bauer, J., Pischan, M., Abele, E., Von Stryk, O.: Model-based off-
line compensation of path deviation for industrial robots in milling applications. IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, AIM (07 2011) 367–372

[5] Klimchik, A., Bondarenko, D., Pashkevich, A., Briot, S., Furet, B.: Compliance error com-
pensation in robotic-based milling. Informatics in Control, Automation and Robotics 283
(09 2014)

[6] Zaeh, M., Schnoes, F., Obst, B., Hartmann, D.: Combined offline simulation and online
adaptation approach for the accuracy improvement of milling robots. CIRP Annals 69 (05
2020)

[7] Mamedov, S., Popov, D., Mikhel, S., Klimchik, A.: Compliance error compensation based
on reduced model for industrial robots. 15th International Conference on Informatics in
Control, Automation and Robotics (01 2018) 180–191

[8] Kaldestad, K., Hovland, G.: Off-line path correction of robotic face milling using static tool
force and robot stiffness. (09 2015) 5506–5511

[9] Schnoes, F., Zaeh, M.: Model-based planning of machining operations for industrial robots.
Procedia CIRP 82 (01 2019) 497–502

[10] Cordes, M., Hintze, W.: Offline simulation of path deviation due to joint compliance and
hysteresis for robot machining. The International Journal of Advanced Manufacturing Tech-
nology 90 (04 2017)

[11] Brüls, O., Bastos, G.J., Seifried, R.: A Stable Inversion Method for Feedforward Control of
Constrained Flexible Multibody Systems. Journal of Computational and Nonlinear Dynam-
ics 9(1) (10 2013) 011014.

[12] Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., Lazoglu, I.: Virtual process
systems for part machining operations. CIRP Annals - Manufacturing Technology 63 (12
2014)

[13] Huynh, H.N., Rivière-Lorphèvre, E., Ducobu, F., Ozcan, A., Verlinden, O.: Dystamill:
a framework dedicated to the dynamic simulation of milling operations for stability assess-
ment. The International Journal of Advanced Manufacturing Technology 98(5) (2018) 2109–
2126

[14] Altintas, Y., Engin, S.: Generalized modeling of mechanics and dynamics of milling cutters.
Cirp Annals-manufacturing Technology - CIRP ANN-MANUF TECHNOL 50 (12 2001)
25–30

[15] Siciliano, B., Sciavicco, L., Luigi, V., Oriolo, G.: Robotics: Modelling, Planning and Con-
trol. (01 2009)

[16] Hoai Nam, H.: Robotic machining: Development and validation of a numerical model of
robotic milling to optimise the cutting parameters. PhD thesis, University of Mons (09 2019)

[17] Dambly, V., Huynh, H.N., Verlinden, O., Rivière-Lorphèvre, E.: Development of tri-dexel
based cutting simulator for cutter-workpiece engagement and cutting forces determination.
(06 2021) 399–402

https://doi.org/10.3311/ECCOMASMBD2021-139

158



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

Analytical Port Inversion For A Flexible
Model In The Two-Input Two-Output Port Approach

A. Finozzi1, F. Sanfedino1, D. Alazard1

1 Institut Supérieur de l’Aéronautique
et de l’Espace (ISAE-SUPAERO)

Université de Toulouse
31055 Toulouse, FRANCE

[antonio.finozzi, daniel.alazard, francesco.sanfedino]@isae-supaero.fr

ABSTRACT

In the context of multi-body modeling techniques, this paper introduces a
new analytical approach to build a Two-Input-Two-Output Port (TITOP) model
for a clamped-clamped flexible appendage. By expanding the previous work
found in literature, which relied on numerical procedures, this model rep-
resents a fundamental block for the construction of parametric multi-body
systems in a sub-structuring approach, such as closed-loop kinematic mecha-
nisms. Specifically, this new procedure allows to assemble a linear state-space
system by analytically inversing the input-output channels of the original
clamped-free TITOP model. This analytical method presents the advantage of
avoiding non-physical behaviors introduced by numerical inversions as well
as removing the need to reduce the quasi-zero poles associated with the non-
analytical model. This paper presents the mathematical formulation of the
system, as well as the formalism behind the method, and an illustrative case
study to showcase the advantages of this approach.

Keywords: Multibody dynamics, Analytical Inversion, Linear System, Closed-
Loop Kinematics.

1 INTRODUCTION

In the past decades, structural and control co-design has attracted a lot of attention due
to its ability of merging multiple multidisciplinary requirements in a single design flow.
Moreover, the increasing use of large structures and appendages for Space applications
has rendered flexible modal analysis mandatory for the design of proper spacecraft con-
trol laws.

In order to tackle the non-trivial modeling and analysis of these large and complex space
systems, a sub-structuring technique using a multi-body approach is often considered to
conceptually simplify the model. Seeing the overall structure as an assembly of multi-
ple simpler sub-systems with increasing complexity has also the advantage of handling
different types of boundary conditions at block assemblage level and easy sub-system
validation.

The wide use of this approach for space applications has raised a significant interest in
the development of proper modeling techniques that can prove to be versatile enough
to account for multiple multi-body configurations, ranging from open-loop chains to
closed-loops mechanisms.

Many sub-structuring techniques can be found in literature. A common approach relies
on approximations linked to the Finite Element Method (FEM) or the Assumed Modes
Method (AMM) [1]. However, these methods are heavily influenced by the set of prede-
termined boundary conditions assigned to the model, which may be drastically variable,
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for example by time-varying mass changes in the system. Another approach often used is
the Transfer Matrix Method (TMM) [2], which creates a transfer matrix that links up the
state vectors (generalized accelerations and forces) of the two extremities of the flexible
body. This has also been linked with the Finite Element Method in order to reduce com-
putational times in solving the eigenvalue problem (FE-TMM). These methods are partic-
ularly well suited for serially connected bodies and open-chain structures. Their major
drawback is the inversion problems of the model, whose matrices may be non-square or
non-invertible depending on the boundary conditions. Moreover, these approaches are
not optimal for a multi-body tree-like structures, where multiple appendages are con-
nected to a single central parent body: in this case the interest is finding the dynamic
relation between state vectors in the same root point for each sub-structure. Methods
based on effective mass/inertia of the appendages [3] represent a viable option to solve
this last problem, but they lose the complete vibrational behavior description, as they
aim at delivering only the dynamic relation of state variable at the appendage root point
with a simplified model of the body.

The Two-Input-Two-Output Port (TITOP) Model, a direct dynamic approach initially
proposed in [4], overcomes these issues. The structure is conceived as a minimal state-
space transfer between the accelerations and wrenches at the extremity points of the
appendage and embeds both the direct and inverse dynamics: the IN/OUT channels are
easily numerically invertible to account for multiple boundary conditions. Moreover, as
seen in [5], this approach in a block-diagram model permits the design of closed-chain
multi-body systems for any boundary conditions by creating feedback loops and invert-
ing IN/OUT channels. These models, already implemented in a toolbox developed at
ISAE-Supaero - the Satellite Dynamics Toolbox (SDT) [6]- represent the basis of this re-
search.

Nevertheless, the application of the numerical channel inversion proposed in [5] shows
some critical aspects, specifically in obtaining the clamped-clamped boundary conditions.
For this boundary condition configuration twelve rigid modes are expected to be at ex-
actly zero frequency. However, because of numerical issues in the channel inversion,
these modes present a quasi-null value instead. This issue, which may seem trivial at
single beam level, can have a huge impact in the context of sub-structuring models: it
may introduce numerical issues due to block repetitions as well as increasing the effort
for model reduction at global structure level.

This research therefore proposes a new approach to obtain a TITOP clamped-clamped
model, introducing a novel analytical procedure to invert the TITOP channels to obtain
a model which does not present the previously discussed numerical issues. This was
achieved by relying on a modal transformation of the state variables, distinguishing from
flexible and junction modes, as introduced in [3] and later on applied by [7].

In the first section, the general formalism used to define flexible and junction modes is
detailed, as well as how these concepts were applied to the formulation of the TITOP
model. This will outline the basis for the mathematical formulation of the analytically
inverted TITOP model presented in section 3. A simple example finally proves the in-
creased accuracy of the proposed framework.
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2 ANALYTICAL BEAM MODEL

2.1 Formalism Adopted

Let us consider a generic flexible appendage. A common approach used to characterize its
vibrational response is to use modal analysis to find normal modes whose superposition
describes the flexible behavior of the body.

The formalism adopted in this paper slightly varies from this classic approach. The vec-
tor of Degrees of Freedom (DOFs) u is divided into two sub-vectors, using the formalism
proposed in [3]: internal DOFs ui and junction DOFs uj . The latter are generally asso-
ciated to boundary conditions or interfaces with other bodies. They are mostly reserved
for parts of the structure where a generic imposed motion is applied. While the internal
DOFs respond with a motion ui, u̇i, üi to a force/torque forcing term Fi, the junction DOFs
respond with a reaction force/torque Fj to an imposed motion-type excitation uj, u̇j, üj.
The equations of motion for a dynamic system may be written according to the following
subdivision of the DOFs:

[
Mii Mij

MT
ij Mjj

][
üi
üj

]
+
[
Cii Cij

CT
ij Cjj

][
u̇i
u̇j

]
+
[
Kii Kij

KT
ij Kjj

][
ui
uj

]
=

[
Fi
Fj

]
(1)

where we can identify the three fundamental symmetrical matrices: the mass matrix M,
the damping matrix C and the stiffness matrix K, each one composed of sub-matrices
associated with both types of DOFs (internal and junction). The modes are obtained
by analyzing the homogeneous undamped harmonic equations of motion. To obtain the
homogeneous system, the forcing terms Fi and uj are suppressed from the previous equa-
tion. Additionally, the undamped equations are considered by setting the whole damping
matrix C = 0. This approach leads to two sets of equations: the first one allows for the
definition of the normal modes.

Miiüi + Kiiui = 0 (2)

The normal modes of the system, denoted with ΦΦΦ ik , can be derived by imposing the
harmonic solution ui = Uie

jωt:

(−ω2Mii + Kii)Ui = 0 (3)

By solution of the corresponding eigenvalue problem, the eigenvaluesωk are obtained, as
well as the normal eigenmodesΦΦΦ ik where k denotes the association with the k-eigenvalue
frequency fk = ωk

2π . These modes have diagonalizing properties on both Mii and Kii .

Furthermore, it is possible to define static modes denoted as junction modes Ψ by impos-
ing a unit displacement uj = 1 on the second homogeneous undamped equation derived
from Eq. 1. These modes verify:

Ψjj = Ijj , KiiΨij + Kij = 0

=⇒ Ψij = −K−1
ii Kij

(4)

An important remark is that the static modes can be interpreted as static transmissibility
in displacements between the DOFs i and j. The two sets of modes can be exploited to
perform a modal superposition in order to describe the displacement vector u = [ui ,uj ]T

as described as follows:

[
ui
uj

]
=

[
ΦikΨij

0 Ijj

][
ηηηk
uj

]
(5)
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The first row expresses the absolute displacement ui as composed by an interpolation of
internal relative DOFs, given by modal coordinates ηηηk , and junction displacements uj .
The second row states that the junction displacements are conserved. By performing this
superposition, a new set of equations of motion can be derived from Eq. 1:

[
mkk Lkj
LTkj Mjj

][
η̈̈η̈ηk
üj

]
+
[
ckk 0Tjk
0jk 0jj

][
η̇̇η̇ηk
u̇j

]
+
[
kkk 0Tjk
0jk Kjj

][
ηηηk
uj

]
=

[
ΦΦΦT
ikFi

ΨΨΨ T
ijFi + Fj

]
(6)

Where:

• mkk = ΦT
ikMiiΦik : diagonal matrix of generalized masses mk . By selecting a nor-

malized set of Φik , it corresponds to the identity matrix Ikk ;

• ckk = ΦT
ikCiiΦik : matrix of generalized damping. A priori this matrix is fully pop-

ulated but under hypothesis of proportional damping w.r.t mass and stiffness or
lightly damped structure the matrix can be considered diagonal with ckk = diag(2ωkξmk),
where ξ is the damping coefficient for the appendix;

• kkk = ΦT
ikKiiΦik : diagonal mass of generalized stiffness kk =mkω

2
k ;

• Lkj = ΦT
ik[MiiMij ]

[
ΨijΨijΨij
Ijj

]
= ΦT

ik(MiiΨijΨijΨij + Mij ): matrix of participation factors. It ex-

presses the coupling between the normal and junction modes.

• Mjj = ΨΨΨ T
ijMiiΨΨΨ ij +ΨΨΨ T

ijMij + MT
ijΨΨΨ ij + Mjj : condensed mass matrix. In the case of a

rigid statically determined junction j = r, it is equal to structure rigid body mass
matrix which includes its properties on mass, center of mass and inertia relative to
the unique node reference frame.

• Kjj = Kjj −KT
ijKiiKij : condensed stiffness matrix. In the case of a rigid statically

determined junction, it is equal to zero.

The formalism introduced here has been applied directly to TITOP models to perform
modal analysis in [7]. In the following section the same procedure will be applied specif-
ically for the TITOP beam model and it will provide the fundamental basics for the ana-
lytical inversion described in section 3.

2.2 Application to TITOP Model

2.2.1 TITOP Model Presentation

Let us consider a uniform flexible appendage Li as in Fig. 1, defined by means of two
points: point P , the point to which the flexible appendage is linked to a parent structure
Li−1, and point C, where a child body Li+1 is linked to the beam.

In the beam model of the appendageLi , clamped-free boundary conditions are considered:
the joint at point P is considered rigid and statically determinate, with the parent body
Li−1 imposing a motion on Li , while point C is internal and unconstrained and the action
of Li+1 is by mean of a transmitted effort. This can be done without any loss of generality
as seen in [5].

The flexible appendix is modeled using a beam model, taken from [6], which describes
the 3D vibrational behavior of Li by considering its bending in planes (x,z) and (x,y), tor-
sion around the x-axis and traction along the x-axis in the local frame R0. The resulting
TITOP model DLiP C(s), displayed in Fig. 1, is a {12×12} linear dynamic model function of
the Laplace variable s. Its inputs are:
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Figure 1. TITOP model and nomenclature for a generic flexible appendage Li

• WLi+1/Li ,C : The {6× 1}Wrench (Forces and Torques) exerted by the body Li+1 to Li
at point C;

• üP : The {6× 1} accelerations (linear and angular) imposed by the parent body Li−1
at point P to Li ;

while the outputs are:

• üC : The {6× 1} components of the accelerations of point C;

• WLi /Li−1, P : The {6× 1}Wrench (Forces and Torques) transferred by Li to the parent
structure Li−1 at point P.

2.2.2 Mathematical Formulation

The vector of DOFs used in the description of the vibrational behaviors is assembled
in order to contain two distinct entities: the kinematic parameters of point P and the
relative deformation at point C with respect to point P . The beam is defined by the main
direction of vector P C, which defines the x-axis of the local frame of reference. This
mathematical formulation stems from the one proposed in [5], where a full description
of the DOFs and the corresponding structural matrices can be found.

For the two bending models, the first 4 modes are considered and the DOFs adopted are
reported in Eq. 7 and Eq. 8.

q̃ =
[
yP ,Φ

z
P ,

TbP z
EIz
, yC − lΦz

P − yP ,Φz
C −Φz

P ,
T zbC
EIz

]T
(7)

p̃ =
[
zP , Φ

y
P ,

T
y
bP
EIy
, zC − lΦy

P − zP , Φ
y
C −Φ

y
P ,

T
y
bC
EIy

]T
(8)

Here we denote with (yP , zP ) and (yC , zC) the displacement components of uP and uC
along the corresponding axis. In the same manner, (Φz

P , Φy
P ) and (Φz

C , Φy
C) are the angular

slopes of the deflection on the indicated axis. Finally, (T yb,C , T zb,C) and (T yb,P , T zb,P ) are the
bending moments at the two endpoints.

By means of the DOFs introduced in Eq. 7 and Eq. 8, both mass and stiffness matrices
may be derived, which are denoted with M̃y, K̃y for (x,y) bending and M̃z, K̃z for (x,z)
bending.

The same approach may be applied for torsion and axial deformations, by taking into
account the DOFs vector of Eq. 9-10, originally proposed by [5]:

θ̃̃θ̃θ =
[
θP , θC −θP

]T
=

[
θP , δθ

]T
(9)

ũx =
[
xP , xC − xP

]T
=

[
xP , δu

]T
(10)
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In this case only their fundamental mode is taken into account. From these vectors the
mass and stiffness matrices M̃θ, K̃θ and M̃u, K̃u are obtained.

In order to obtain the global mass and stiffness matrices (M̃gl, K̃gl) for the whole beam,
the sub-matrices corresponding to each vibrational behavior may be assembled in a block
diagonal fashion, so that it corresponds to the global DOFs vector d̃gl .

d̃gl =
[
q̃, p̃, θ̃̃θ̃θ, ũx

]T
(11)

M̃gl =




M̃y 0 0 0
0 M̃z 0 0
0 0 M̃θ 0
0 0 0 M̃u



, K̃gl =




K̃y 0 0 0
0 K̃z 0 0
0 0 K̃θ 0
0 0 0 K̃u




(12)

A permutation on these matrices can be performed in order to obtain a DOFs division as
seen in Eq. 1, through the use of a permutation matrix P. The resulting global mass and
stiffness matrices, as well as the vector of DOFs dgl is shown in Eq. 13 and Eq. 14. The
point P is a junction node, therefore we can substitute the subscript j with P .

dgl =
[
uP , uf

]T
= Pd̃gl (13)

Mgl = PM̃glP
T =

[
Mrr Mrf

Mf r Mf f

]
, Kgl = PK̃glP

T =
[
0rr 0rf
0f r Kf f

]
(14)

The matrix Mrr represents the mass matrix of the rigid body at point P , while Mf r and
Mrf are the coupling terms between the displacement of point P and the internal flexible
DOFs of vector uf . The vectors uP and uf are given by:

uP =
[
xP , yP , zP , θP , Φ

y
P , Φz

P

]T

uf =
[
xC − xP , yC − yP − lΦz

P , zC − zP − lΦ
y
P ,θC −θP ,

Φ
y
C −Φ

y
P ,Φ

z
C −Φz

P ,
T
y
bP

EIy
,
T zbP
EIz

,
T
y
bC

EIy
,
T zbC
EIz

]T

We introduce τττCP as the kinematic link between the internal node C and the junction
node P :

τττCP =
[
I3×3,

∗CP
03×3 I3×3

]
(15)

Where ∗CP is the skew-symmetric matrix obtained from the vector from point C to point
P . It can be verified that matrix τCP corresponds exactly to the junction modes matrix
ΨΨΨ ij introduced in section 2. By performing modal analysis on this system, remarking
that by imposing Eq. 4 we get ΨΨΨ ij = 0, the following expression can be found:
[
Mrr LTkP
LkP Ikk

][
üP
η̈̈η̈ηk

]
+
[
0P P 0kP
0TkP ckk

][
u̇P
η̇̇η̇ηk

]
+
[
0P P 0kP
0TkP kkk

][
uP
ηηηk

]
=

[
ΦΦΦT
CkWLi+1/Li ,C

τττTCPWLi+1/Li ,C −WLi /Li−1, P

]
(16)

Where:

• LkP =ΦΦΦT
ikMf r • ckk = diag(2ξkωk) • kkk = diag(ω2

k )

The state space system can be directly obtained from this formulation, thanks to the
relation:

üC =ΦΦΦCkη̈̈η̈ηk +τττCP üP (17)
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The resulting system is therefore showcased in Eq. 18, where the state-space system
DLiP C(s) is the TITOP model corresponding to the one of Fig. 1.




η̇̇η̇ηk
η̈̈η̈ηk
üC

WLi /Li−1, P




=




0kk Ikk 0kC 0kP
−kkk −ckk ΦΦΦT

Ck −LkP
−ΦΦΦCkkkk −ΦΦΦCkckk ΦΦΦCkΦΦΦ

T
Ck (τττCP −ΦΦΦCkLkP )

LTkPkkk LTkP ckk (τττCP −ΦΦΦCkLkP )T LTkPLkP −Mrr




︸                                                                           ︷︷                                                                           ︸
DLiP C(s)




ηηηk
η̇̇η̇ηk

WLi+1/Li ,C
üP




(18)

3 ANALYTICALLY INVERTED TITOP MODEL

3.1 TITOP Beam Models and Closed-Loop Kinematics

The TITOP beam model detailed in section 2.2 presents a specific set of boundary con-
ditions. Despite this, the importance of handling different boundary conditions plays a
fundamental role in the correct modeling of complex systems, specifically in closed-loop
kinematics.

For instance, let us consider a basic closed-loop mechanism, such as a triangle, which can
be used as a building block to assembly more complex structures using a sub-structuring
approach.
This mechanism, composed by three flexible bodies and represented in Fig. 2a, can be
imagined clamped to a parent body L0 at point A and being submitted to efforts coming
from two external bodies L4 and L5 attached at points B and C respectively.
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üA

WL4/∆,B

W∆/L0,A
üB
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WL5/∆,C

WL4/∆,C

W∆/L0,A

(b)

Figure 2. Block diagram of the ∆ mechanism, showcased in 2a and modeled in 2b
in the TITOP framework. Note that the blocks Ri,j represent the rotation matrices
between the i−th and j−th frames of references.

The triangular structure, which can be denoted as ∆, can be modeled as a dynamic system
whose inputs are the accelerations üA imposed at point A by L0 and the external efforts
WL4/∆,B, WL5/∆,C applied by the bodies L4 and L5 to the triangle mechanism ∆.

In the context of a sub-structuring approach, the triangular structure ∆ can be conceived
as an assembly of multiple TITOP models, as seen in Fig. 2b. These blocks have to be
properly connected in order to impose the correct input-output configuration and to close
the kinematic loop.

The only way to achieve this result is to use not only clamped-free models, but a clamped-
clamped TITOP model as well. In fact, at sub-structure level, the two beams L1 and L3
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can be considered clamped-free using the two direct TITOP models DL1
A,B(s) and DL3

A,C(s),
as they have an acceleration imposed by a parent body at point A and are submitted to
an effort by external bodies at points B and C. The assembly of the closed-loop is then
achieved by imposing force/moment balance at each node of the structure. Since the
distribution of the external efforts on the different beams is unknown, the third beam L2
is considered with accelerations imposed at both ends: the accelerations outputted by the
TITOP models of L1 and L3 are the inputs of the TITOP block of L2, as this allows for
the retrieval of the reaction forces exerted by L2 to the other bodies, namely WL2/L1,B and
WL2/L3,C . This means considering a TITOP model with the first six channels inverted,[
DL2
B,C(s)

]−1[1:6] , that represents a clamped-clamped beam.

A numerical procedure to invert the channels of a TITOP model has been introduced in
[5]. The following section provides a new analytical formulation for the clamped-clamped
beam that solves the numerical issues found in the current TITOP model channel inver-
sion.

3.2 Mathematical Formulation

An analytical inversion is here proposed for the first six channels of the original TITOP
beam model introduced in section 2.2, which correspond to the free node C.

The inversion process aims at obtaining the analytically inversed model
[
DAP C(s)

]−1(1:6)

ana
whose input-output configuration reflects a clamped-clamped boundary condition applied
to the beam. As depicted in Fig. 3, the inputs of the system are the endpoint accelerations
üP and üC , while the corresponding outputs are the efforts on those points, which are still
maintaining the same formalism of the original TITOP model.

6

6

6

6

[D
Li
PC(s)]

−1(1:6)
ana

üC

üP

WLi+1/Li,C

WLi/Li−1,P

Figure 3. Input-output configuration for the analytically inverted clamped-clamped
TITOP beam model

A change of variables is applied to the system in Eq. 16. We introduce vector εεεk , parti-
tioned in two sub-vectors: εεεk1

and εεεk2
. The first one, of size {6 × 1}, corresponds to the

twelve poles at exactly zero frequency of the system. This is done to enforce the clamped-
clamped boundary condition. The second vector, on the other hand, has a size of {4 × 1}
and determines the internal vibrational response of the system. The modal coordinates
can be rewritten as:

ηηηk = Fεεεk =
[
ΦΦΦ+
Ck null(ΦΦΦCk)

][εεεk1

εεεk2

]
(19)

where the (·)+ operator denotes the generalized inverse (or pseudo-inverse) of the non-
square matrix and null(·) the null space operator (or kernel). The use of this last operator
allows the creation of a model whose modes corresponding to εεεk1

are intrinsically set to
zero, while the modes associated to εεεk2

do not get simplified.

The first state equation for the new system can be directly derived from Eq. 19. By
substituting this equation into Eq. 17, an explicit expression for εεεk1

may be obtained as
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function of the two inputs üP and üC .

ε̈̈ε̈εk1
=ΦΦΦCkFε̈̈ε̈εk =

[
I 0

]
ε̈̈ε̈εk = üC −τττCP üP (20)

The change of variables may be performed on the modal equations of motion in Eq. 18:

ε̈̈ε̈εk =
[
ε̈̈ε̈εk1

ε̈̈ε̈εk2

]T
= −kkkεεεk − ckkε̇̇ε̇εk −F−1LkP üP + F−1ΦΦΦT

CkWLi+1/Li ,C (21)

where kkk = F−1kkkF and ckk = F−1ckkF. Moreover, this expression may be rewritten in
order to explicit the two sub-vectors which compose vector εεεk , therefore obtaining a set of
two equations. The following notation is hereby introduced, which defines the partition

of matrices kkk and ckk : X =
[
X11 X12
X21 X22

]
.

The first of the two equations obtained from Eq. 21, expressing ε̈̈ε̈εk1
, is:

ε̈̈ε̈εk1
= −kkk11

εεεk1
−kkk12

εεεk2
− ckk11

ε̇̇ε̇εk1
− ckk12

ε̇̇ε̇εk2
+ΦΦΦCkΦΦΦ

T
CkWLi+1/Li ,C −ΦΦΦCkLkP üP (22)

An explicit expression for WLi+1/Li ,C can be derived from this equation, substituting ε̈̈ε̈εk1

by inverting Eq. 20. This represents the first output equation for the new state-space
system:

WLi+1/Li ,C = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck

(
kkk11

εεεk1
+ kkk12

εεεk2
+ ckk11

ε̇̇ε̇εk1

+ ckk12
ε̇̇ε̇εk2

+ üC + (ΦΦΦCkLkP −τττCP )üP
)

(23)

which can be rewritten in the form:

WLi+1/Li ,C = C11εεεk1
+ C12εεεk2

+ C13ε̇̇ε̇εk1
+ C14ε̇̇ε̇εk2

+ D11üC + D12üP (24)

Where:

• C11 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk11

;

• C12 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk12

;

• C13 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk11

;

• C14 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk12

;

• D11 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck ;

• D12 = (ΦΦΦT
Ck)

+ΦΦΦ+
Ck(ΦΦΦCkLkP −τττCP )

The second equation in Eq. 21 describes the behavior of ε̈̈ε̈εk2
:

ε̈̈ε̈εk2
= −kkk21

εεεk1
−kkk22

εεεk2
− ckk21

ε̇̇ε̇εk1
− ckk2

ε̇̇ε̇εk2

−null(ΦΦΦCk)
TΦΦΦT

CkWLi+1/Li ,C −null(ΦΦΦCk)
TLkP üP (25)

Note that by definition of the kernel operator, ΦΦΦCk · null(ΦΦΦCk) = 0. Therefore also
null(ΦΦΦCk)TΦΦΦ

T
Ck = 0. This property has the effect of canceling the contribution of
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Table 1. Parameters of TITOP Beams used for the case study

l [m] S [m2] ρ [kg/m2] E [GP a] ν Iy [m−4] Iz [m−4] ξ

20 0.0004 2700 70 0.35 6.7e-7 6.7e-7 0.001

WLi+1/Li ,C to the second order dynamics of εεεk2
, allowing for an explicit expression of

ε̈̈ε̈εk2
as function of state variables and inputs only.

The final expression needed to complete the TITOP model is the output equation for
WLi /Li−1, P . This can be easily obtained from the outputs of Eq. 18, to which the change of
state variables is applied. The resulting equation is:

WLi /Li−1, P = C21εεεk1
+ C22ε̇̇ε̇εk1

+ C23εεεk2
+ C24ε̇̇ε̇εk2

+ D21üC + D22üP (26)

Where:

• LKF = LTkPkkkF;

• LCF = LTkP ckkF;

• TPL = (τττCP −ΦΦΦCkLkP );

• C21 = LKF(:,1 : 6) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk11

;

• C22 = LKF(:,1 : 6) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk11

;

• C23 = LKF(:,7 : 10) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckkkk12

;

• C24 = LKF(:,7 : 10) + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ckckk12

;

• D22 = TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
Ck ;

• D22 = LTkPLkP −Mrr + TPLT (ΦΦΦT
Ck)

+ΦΦΦ+
CkTPL

These results can be used to obtain a TITOP Model for the inversed clamped-clamped
beam. By using the results of Eq.s 20,24,25,26, the final system can be assembled as
follows




ε̇̇ε̇εk1

ε̈̈ε̈εk1

ε̇̇ε̇εk2

ε̈̈ε̈εk2

WLi+1/Li ,C
WLi /Li−1, P




=




0k1k1
Ik1k1

0k1k2
0k1k2

0k1C 0k1P

0k1k1
0k1k1

0k1k2
0k1k2

Ik1C −τττCP
0k2k1

0k2k1
0k2k2

Ik2k2
0k2C 0k2P

−kkk21
−ckk1

−kkk22
−ckk2

0k2C −null(ΦΦΦCk)TLkP
C11 C12 C13 C14 D11 D12
C21 C22 C23 C24 D21 D22




︸                                                                         ︷︷                                                                         ︸
[
DLiP C(s)

]−1[1:6]

ana




εεεk1

ε̇̇ε̇εk1

εεεk2

ε̇̇ε̇εk2

üC
üP




(27)

The
[
DLiP C(s)

]−1[1:6]

ana
model in Eq. 27 is the analytically inverted clamped-clamped TITOP

model showcased in Fig. 3.
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4 MODEL APPLICATION AND VALIDATION

In order to validate the accuracy of the newly derived model, the system has been veri-
fied by comparison to a reference theoretical beam model [3] as well as the numerically
inverted TITOP beam of [5].

Given a homogeneous beam of lenght l, section S, density ρ, Young modulus E, Poisson’s
ratio ν, second moments of inertia Iy , Iz along y and z axes and damping coefficient ξ,
the parameters presented in Table 1 were used to obtain the singular value plots seen in
Fig.4.

This plot describes the transfers between üP and WLi /Li−1,P for both analytically and nu-
merically inverted models. In particular we define:

Gana
WP ,üP

(s) =
([

DLiP C(s)
]−1[1:6]

ana

)

üP→WP

, Gnum
WP ,üP

(s) =
([

DLiP C(s)
]−1[1:6]

num

)

üP→WP

(28)

as the multiple-input-multiple-output transfers between üP and WLi /Li−1,P for the analyt-

ically inverted
[
DLiP C(s)

]−1[1:6]

ana
and the numerically inverted

[
DLiP C(s)

]−1[1:6]

num
models.
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Figure 4. Singular values for the analytically Gana
WP ,üP

(s) and numerically Gnum
WP ,üP

(s)
inverted TITOP models

The two responses match exactly except for near-to-zero frequency values: in this range
the numerical inversion produces artificial behaviors like non-physical zeros and poles.
The proposed analytical system overcomes these issues, granting an infinite gain at zero
frequency with a correct 1/s2 dynamics at low frequency. This is in fact the expected
behavior of the system, where the imposition of non-compatible accelerations at the two
extremities of the rigid beam produces infinite efforts.

These results are furthermore corroborated by comparing the modes of the two models:
Table 2 shows the normalized natural frequencies of the two clamped-clamped models -

analytical and numerical. The frequencies, normalized by
√

EI
ρSl4

, are also compared to

the reference theoretical values expected for each mode.
A study of Table 2 shows how the introduction of the analytical model solved the non-

zero poles issues found in the numerically inverted TITOP model, while granting the
same level of accuracy in the description of the vibrational phenomena. The last four
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Table 2. Comparison of the natural frequencies, normalized by
√

EI
ρSl4

, of the nu-

merically inverted TITOP model (ωk,num) and the new analytically inverted model
(ωk,ana) to the reference theoretical value ωref

Mode k ωk,ref ωk,num ωk,ana Mode k ωk,ref ωk,num ωk,ana

1 0 0.00 0.00 6 0 9.15e-08 0.00
2 0 0.00 0.00 7 22.373 22.450 22.450
3 0 6.04e-17 0.00 8 22.373 22.450 22.450
4 0 2.28e-14 0.00 9 61.673 62.929 62.929
5 0 9.15e-08 0.00 10 61.673 62.929 62.929

flexible modes are in fact corresponding exactly to the modes found in [5] for the bend-
ing of a clamped-clamped beam, and represent a good approximation of the reference
frequency value.

5 CONCLUSIONS

An analytical model of a clamped-clamped TITOP beam was derived in order to overcome
the limits of the numerical inversion of the clamped-free TITOP model.
The proposed model has been validated by theoretical results and it represents a building
block for modeling more complex multi-body flexible structures in closed-loop configu-
rations.
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ABSTRACT

Various types of seismic protection devices has been developed to protect structures
like bridges from collapse during an earthquake event, such as hydraulic or metal-
lic hysteresis dampers and spherical pendulum bearings. The expansion joints how-
ever, which are already included in most large-span bridges, are not considered as an
earthquake protection device regardless of the significant friction forces they produce.
These friction forces can be seen as damping forces between the shaking environment
and the oscillating bridge. To investigate the effect of those damping forces during
different earthquake loads, a multibody dynamics simulation model of the expansion
joints will be created. This model should be accurate enough to represent the gen-
eration of the damping forces and effects of the geometric setup of the expansion
joints. Because large expansion joints for large-span bridges are of special interest,
the number of degrees of freedom (DOF) becomes very high. Because this models
include stiff bushings, implicit solvers need to be used to gain a stable simulation.
Expansion joints are almost unique constructions for every specific bridge, which re-
quires a automated model generation. Because of its excellent modules for numerical
mathematics, the scripting language Python is used. To create an efficient simulation
model, several optimization techniques such as Just-In-Time (JIT) compilation and
parallelization are implemented and tested.

Keywords: Parallelization, Optimization, Python, Earthquake Engineering.

1 INTRODUCTION
Earthquakes are one of the most dangerous hazards to our civilization. Protecting buildings is of
special interest in earthquake engineering to save life during an earthquake as well as to maintain
critical infrastructure for rescue operations after such an event. To achieve this, so called seismic
protection devices are developed. They can be roughly grouped into ground isolation and energy
dissipation devices. The former acting as a decoupling between the shaking ground and the con-
struction to reduce the movement which is brought into the structure. They also have the task of
recentering the building to its initial position. An example for those devices are sliding pendulum
isolation bearings with spherical sliding surfaces. The second category are the energy dissipation
devices, which should transform as much movement energy into thermal energy. This is typically
done by hydraulic dampers, which are using the friction of a fluid to dissipate energy. Depend-
ing on their dimension, hydraulic dampers are capable of large displacements. Steel hysteresis
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dampers on the other hand are using the energy dissipation from plastic deformation of steel,
which is highly economical and effective, but their movement capacity is very limited compared
to hydraulic dampers.

Another device, which is included in most medium to large-span bridges and is initially not con-
sidered as an earthquake protection device, are the expansion joints. Their task is to cover gaps
between several bridge sections and between the bridge and the respective abutment. These gaps
are included to compensate relative movements between those segments due to heat expansion of
the bridge. Larger bridges generating larger expansion movements, so those gaps become larger,
too. To divide those large gaps into smaller gaps, modular expansion joints come into considera-
tion. They are consisting of steel center beams which are placed perpendicular to the roadway and
subdivide the gap into sub-gaps. To distribute the change of the gap over all sub-gaps, a control
mechanism must be included. A modern approach for this task, which is suitable for almost all
sizes of expansion joints, is the swivel joist control mechanism. The support beams, which are
fulfilling the task of the swivel joist, are rotating in consequence of a changing gap. The rubber
bearings, which are connected to the support beams and can only rotate around the vertical axis,
transmitting the swivel motion to the overlying center beams. The complete control mechanism
follows the intercept theorem and guarantees that the gap is distributed equally over all sub-gaps
at any time. A schematic representation of this mechanism is displayed in figure 1.

Support Beams
= const.

Center Beam

Bearing/Spring

Figure 1: Schematic representation of the kinematic control mechanism of a swivel joist expansion
joint

Modular expansion joints are not considered as seismic protection device yet. But they include
some interesting properties as they generate high friction forces due to many sliding contacts in
large expansion joints. Those friction forces acting in opposite direction of the relative movement
and can be therefore seen as damping forces as they are generated by dissipation devices. Those
forces are acting at strategically advantageous locations as they are able to reduce the movement of
the bridge superstructure. Another outstanding benefit of the modular expansion joint, especially
for larger devices, is their enormous movement capacity. Those possibilities are very promising
and should be investigated to further enhance the seismic performance of those devices.

Other works like [1] investigated the seismic response of bridges with models which represent the
pounding on finger expansion joints. In this work however, a multibody dynamics model of more
complex modular expansion joints will be built. Therefore, a simulation model of the dynamic
response of modular bridge expansion joints and the connected bridge under earthquake loads is
developed. The mechanical control mechanism of modular expansion joints can, depending on the
bridge size, consist of several hundred bodies and therefore around thousand degrees of freedom
(DOF). This combined with the stiff differential equations arising from stiff force elements requires
several optimization steps.

2 MODELING
Large expansion joints are of special interest, because the hazard potential and economical damage
on large span bridges with such expansion joints is very high. In this work, the expansion joint
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displayed in figure 2b will be modeled and simulated.

(a) MAURER Swivel Joist Expansion Joint

(b) Reduced simulation model

Figure 2: Expansion joint, modeled with 307 rigid bodies, 270 bushings, 270 friction force ele-
ments and 270 prismatic sliding joints

This expansion joint is of type swivel joist expansion joint with 10 support beams and 27 center
beams. The support beam on the left hand side is fixed on both ends and acts as a guide for the
center beams. All other support beams are translationally fixed on the bottom side an can therefore
only rotate around the vertical axis of the drawing plane. The support beams have angles of 0°,
13°, 17° and 20° relative to the roadway direction and are 7.5 m long. The center beams are 15 m
long. Each center beam is connected to the support beams via one rubber bearing, which leads to
a total of 270 bearings.

The complete modeling and simulation will be implemented with the scripting language Python
and mainly with the numerical module Numpy [2]. Python offers an easy and efficient way to
create such simulation models and connect to other development environments with its broad
range of modules. Furthermore, Python has great interfaces and frameworks to display, analyze
and interactively publish results via notebooks or even as web applications. Numpy comes with
many functions for numerical computing and it is mostly written in C for better performance. For
optimization purposes, which are described in the next section, the complete calculation parts for
the simulation are structured into Python functions. In the end, there will be one function called
qdot(t,q,...) which computes the time derivative of the global state vector. This function calls
the other functions for computing forces, constraint reactions, Lagrange multipliers, solving the
equation system and much more.

2.1 Bodies
The presented model consists of 307 rigid bodies. In order to describe them as 3D bodies, Euler
angles could be used. This leads to 6 DOF for each body, respectively, and to an overall DOF
count of 1842. Because implicit integration schemes must be used as described in section 2.4, the
time expensive calculation of a Jacobian matrix is required, which has the shape [2 ·DOF,2 ·DOF].
Because the Jacobian will be computed numerically by finite differences, each extra DOF will in-
crease the effort for each function evaluation as well as the required number of those function
evaluations. Because of this, the computation effort for the Jacobian matrix increases exponen-
tially as displayed in figure 3. Using 2D bodies for the simulation, the number of DOF is halved
compared to 3D bodies and the computation time for the Jacobian reduces to about one fifth.

The used rigid 2D bodies can translationally move in a plane defined by the x- and y-axis and
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Figure 3: Normalized computation time for the calculation of the Jacobian matrix by finite differ-
ences depending on the DOF

rotate around the perpendicular z-axis. The state vector of one body is defined as follows

q =
[
x,y,φ , ẋ, ẏ, φ̇

]T (1)

2.2 Forces
2.2.1 Bushings
The main parts, of which a swivel joist expansion joint consists, is displayed in figure 4.

Figure 4: Parts of the swivel joist control mechanism. 1: Edge Beam, 2: Center Beam, 3: Support
Beam, 4: Bearing

The bearing is connected to the overlying center or edge beam by a bushing, which has translational
stiffness but can rotate freely. The translational stiffness is defined to match the corresponding
shear stiffness of the rubber inlets of the bearing. The force gets calculated by a Python function
with the displacement ∆x in respective to the starting displacement u0 at t = 0

∆x = (r01,0 +A01 · rSP,1 − r02,0 −A02 · rSP,2)−u0 (2)

where r0n,0 is the global position vector, A0n the rotation matrix and rSP,n is the body-fixed vector
from the center of mass to the actual connection point, all in respective to the connected bodies
n ∈ [1,2] and in the global coordinate system 0 or the local, body-fixed coordinate system of the
corresponding bodies. The resulting bushing force is then obtained by

FB,0 = kB ·∆x (3)
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with the stiffness vector kB including the stiffness in x- and y-direction. If rSP,n ̸= 0, then the
resulting moment

MBn,0 = (A0n · rSP,n)×FB,0 (4)

is also evaluated.

2.2.2 Friction
The bearings are able to slide along the support beams. To ensure that those components are
always in contact, a pre-loading mechanism is included which is not displayed in figure 4. The
resulting normal force produces friction forces in the sliding plane. The newest generation of
sliding bearings consists of sliding surface made out of ultra high molecular weight polyethylene
(UHMWPE) with excellent sliding properties. Although friction coefficients are initially relatively
low, it is expected that this coefficient increases over time due to dirt and other particles. With
this long term effects in mind, a friction coefficient of 5 % is used for all upcoming simulations.
In reality, there is another sliding component at the bottom sliding surface of the support beam
included by the aforementioned pre-loading mechanism. Because this component does not affect
the control mechanism, it gets ignored for the simulation model and only its friction force, which
is similar to the friction force of the bearing, is considered.

The friction forces are calculated by the regularized friction model [3] displayed in figure 5. This
model represents the singularity of the Coulomb friction model at vt = 0 with a linear approxima-
tion. Friction tests have shown, that the friction force of the UHMWPE sliding bearing is nearly
constant at higher velocities, so the assumption of constant friction is acceptable.

vt

µ
Coloumb friction

Regularized friction

Figure 5: Schematic representation of the regularized friction model

The velocity between the two sliding bodies gets determined as

∆ẋ = ṙ01,0 + Ȧ01 · rSP,1 − ṙ02,0 − Ȧ02 · rSP,2 (5)

The absolute tangential velocity is then calculated by the Frobenius norm

vt = |∆ẋ|F (6)

With the friction coefficient, obtained by the tangential velocity, the Friction force can be calcu-
lated as follows

Ff ric = µFN
∆x
vt

(7)

2.3 Constraints
The bearings are considered to slide along the corresponding support beam without any significant
gaps on the either side. This means, the support beam and bearing can be considered as a sliding
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joint where the bearing can only slide along an axis defined by the support beam. All other DOF
of the bearing are eliminated by the kinematic constraint. Because this system will be described
by a index reduced differential algebraic equation system (DAE), a constraint equation for this
kinematic joint is defined. The example below defines that the x-axis of body 1 defines the sliding
axis

g(y) =
[
(A01 · ex)

T (A02 · ey)

(A01 · ex)
T r12,0

]
= 0 (8)

where ex and ey are unity vectors in each direction and y is the location vector. This equation
system implies in the first equation that the local coordinate systems of each body must be equally
oriented and in the second equation that the connecting array must be perpendicular to the sliding
direction [4].

2.4 Differential-Algebraic-Equations
As mentioned in the section before, the system is described by DAE of the form

ẏ = z (9)

Mż = Fe + JT
g λ (10)

0 = g(y) (11)

where y is the location vector, z is the velocity vector, M is the mass matrix, Fe are the external
forces, Jg is the Jacobian matrix of the constraint equations, λ are the Lagrange multipliers and
g(y) are the constraint equations [5]. In order to solve this equation system, the index need to be
reduced from 3 to 1, which could be done with to consecutive time derivations of g(y), so that
equation 11 becomes

0 = Jgż+ J̇gz (12)

and the DAE can be solved with any ordinary numerical integrator. To reduce the drift in the
constraint equation resulting from the index reduction, a stabilization according to Gear, Gupta
and Leimkuhler [6] is implemented, which adds another Lagrange multiplier

µ =−
(
JgJT

g
)−1

Jgz (13)

so that equation 9 becomes
ẏ = z+ JT

g µ (14)

This stabilizes the equation system on the velocity level and reduces the drift in the constraint
equations.

3 OPTIMIZATION
When running a simulation with the described Python and Numpy implementation of the model
displayed in figure 2b, the overall computation time even for simple and steady movements is
extremely high. For example, the so called service case, where the joint opens and closes with
a velocity of 0.2 ms−1, takes several days to complete, even on virtual machines with up to 64
processor cores and optimized vector processing capabilities. Numpy is able to us multithreading
for several vector workloads, but increasing the core count does not make any noticeable difference
and the maximum number of used threads is limited to 32 anyway. This means, the roots of all
heavily time consuming calculations has to be identified and specifically treated.

3.1 Just-in-Time Compiling
To identify the bottlenecks inside the simulaiton, a line-by-line profiler for the function q̇ = f (t,q)
is used. With this techniques, the specific time consumed by a single line in a function can be
identified. The main evaluation times for f (t,q) are displayed in table 1.
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Task Time/Hit % Time
Computaion bushing/friction forces 0.25 s 55.7 %

Computaion constraints 0.2 s 44.3 %

Table 1: Evaluation times of specific parts of the function f (t,q)

Almost the complete effort of one function call goes into the determination of bushing, friction and
constraint forces. All other tasks, like the solution of the linear equation system from equation 10,
are not affecting the computation time by much. The following chart shows the included functions
and how often they are called in this setup.

Figure 6: Relationship between different function calls and how often these functions are called

It can be seen, that the function f (t,q) is calling each function about 270 times for this model.
The function itself is called 1-5 times, depending on the convergence, by the used BDF integrator
described in [7]. The integrator needs the Jacobian matrix

J ≈ ∂ f (t,q)
∂q

(15)

to solve the nonlinear equation system, as described in [8]. Although the evaluation of the Jacobian
matrix is not done at each time step, overall it introduces a lot of function calls. This shows the
importance of efficient function evaluations.

Python is generally a relatively low performing programming language when it comes to compu-
tation time because it is interpreted. Even with the optimized Numpy calculations, many loops
and other pure Python operations need to be done. To gain more efficiency, a compiled code is
preferred. One solution would be to re-write the functions with C/C++, compile them as shared
libraries and wrap them via ctypes. A similar performance with less re-programming effort can be
reached with compiling the Python functions with the just-in-time compiler Numba [9]. Numba
is designed to be used with Numpy arrays. After adding Numba to the functions called by f (t,q),
the overall evaluation time of this function gets reduced by 60 %. Because the overall simulation
time linearly depends on the function evaluation time, it is reduced by approximately two thirds as
well.
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3.2 Sparse Jacobian Matrix
When profiling the solver, it can be seen that the evaluation of the Jacobian is by far the most
time consuming part. Obtaining the Jacobian with the default dense finite difference approach
takes about 90 s. The used integrator scipy.integrate.BDF offers the possibility to use a sparse
Jacobian. When using this option, the sparsity pattern must provided in a form, which tells the
integrator at which locations the Jacobian is nonzero. For the expansion joint from figure 2b, the
sparsity pattern is as displayed in figure 7.

Figure 7: The sparsity pattern of the Jacobian matrix. Blue dots indicate where the matrix entry is
not zero.

A count of the nonzero element results in 334747 nonzero element which represent about 10 %
of the complete matrix. When providing this sparsity pattern, only those elements are getting
calculated when the Jacobian is re-evaluated [10]. This lowers the evaluation time for the Jacobian
matrix to about 47 s, which is almost twice as fast as the dense computation. But overall, the whole
simulation takes still several days to finish, which is not convenient when aiming for parameter
studies.

3.3 Parallel Jacobian Matrix
Another option is parallelization of heavy workloads such as the computation of the Jacobian
matrix, which is by far the most demanding part when integrating a time step. Modern computing
architectures are offering (virtual) machines with a wide range of hardware capabilities for such
tasks. Instead of successively computing parts of the Jacobian matrix, it would be highly beneficial
if those tasks could be done simultaneously at different cores of the CPU. The computation of the
approximation of the Jacobian matrix, which should be parallelized, can be achieve with finite
differences

Ji =
f (t,qq[i]+ε)− f (t,q)

ε
(16)

where i ∈ [1,1842], Ji is the i-th column of J and ε is a small value of typically 1× 10−8. This
shows, that the columns of J could be calculated independently from each other, which means that
multiple columns could be calculated in parallel and getting joined afterwards.

One of the core concept of Python is the global interpreter lock (GIL). This means that every
Python code needs the single GIL to be executed and could not be multithreaded, which guarantees
a thread-safe memory management. On the other hand, one Python interpreter could only run one
thread at a time. This might be beneficial when using multithreading for Input/Output (I/O) bound
tasks, but could result in a decreased performance of CPU bound tasks, which the computation of
the Jacobian matrix is.
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A solution for this problem is multiprocessing. Instead of one Python process using multiple
threads, multiple Python processes are spawned where each process is completely isolated from
the others. This is well suited for the computation of the Jacobian matrix because the calculation of
each column is independent of the other columns. Each of those processes have their own Python
interpreter, are therefore not affected by the GIL and can run truly in parallel. The overhead intro-
duced by creating multiple processes and joining the results together is more than compensated by
the achieved parallelism at CPU bound tasks.

Multiprocessing in Python could be achieved with the multiprocessing module, which is in
the standard library of Python. When testing the performance of the multiprocessed computation
of the Jacobian matrix, the evaluation time surprisingly increased when using more processes, as
displayed in figure 8.
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Figure 8: Increasing evaluation time of the Jacobian when using more processes

In consequence of this, the overhead of the multiprocessing steps are investigated. It was sus-
pected, that more processes are leading to more overhead in splitting the workloads and joining
the results so that the advantage of parallelism is neglected. But it was observed, that the over-
head for each process is very small compared to the evaluation time of the function inside the
computation of the corresponding Jacobian matrix column. This indicates that there must be other
overhead, which throttles the performance of this processes.

When further investigating the Numpy processes, it was noticed, that Numpy is using true mul-
tithreading without a GIL, which is possible because they are written in C. What happens when
using more processes, is that each of those processes wants to use multiple threads, which results in
additional overhead managing the threads because many workloads demanding a limited amount
of CPU threads. Luckily, it is possible to limit the number of threads which Numpy is using for
it’s functions. Adding the thread count as another dimension to the parameter study from image 8,
the graph from image 9 is obtained.

This result shows, that the parallelization through multiprocessing becomes more effective when
the maximum number of threads used by Numpy is limited to 1. It can be seen also, that more
processes result in an exponential decay. To identify the saturation, at which increasing the process
count does not have a noticeable effect, the Python simulation is executed with 1-64 processes on
a machine with 64 cores. The result is displayed in figure 10.

This indicates that a higher core count of more than 32 cores does not increase the performance of
the Jacobian matrix evaluation any further.

Because the parallel computation of the Jacobian matrix is the most efficient with about 3 s, the
future computations will use this method. Therefore, a wrapper function is implemented to create
an interface which the solver can use for the re-evaluation of this matrix.
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Figure 9: Jacobi matrix evaluation time depending on processes and allowed thread usage by
Numpy
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Figure 10: Jacobi matrix evaluation time depending on processes with clear saturation at about 32
processes

4 ASSESSMENT OF SEISMIC PROTECTION POTENTIAL
4.1 Environment Setup
The initial purpose of this model development was to investigate the seismic protection potential
of an expansion joint like displayed in figure 2b. The suggested method to obtain this potential
is by creating a response spectrum of a single DOF model which represents the bridge build-
ing. A response spectrum displays the maximum acceleration, also called spectral acceleration,
in dependence of the period of the single DOF model. These accelerations can be obtained by
making several time step simulations with different natural frequencies of the single DOF model
and using the maximum acceleration response of those simulations. In order to generate a spectral
acceleration, the complete simulation system displayed in figure 11.

The mass gets exposed to an earthquake ground acceleration and oscillates according to its natural
frequency. The expansion joint is connected to this mass and experiences a earthquake acceleration
from the abutment, too. The parameters from table 2 are used for the simulation.

The ground acceleration from the 1989 Loma Prieta earthquake [11] is used as the earthquake
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Earthquake acceleration

aaaaa

Earthquake acceleration

Bridge model (m,ω0)

Expansion
joint model

Figure 11: Earthquake system setup

Mass m 1×108 kg
Natural frequency ω0 6.3 s−1

Friction µ 0.05

Table 2: Parameters used for the earthquake simulation

acceleration.

4.2 Simulation Results
When considering, that larger bridges containing more than one expansion joint, the used mass
for the single DOF model is realistic when computing with one expansion joint only. To see the
damping effect, which the expansion joint generates on the oscillating mass, the acceleration of
the mass with and without the expansion joint model is displayed in figure 12.
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Figure 12: Bridge response acceleration with and without the expansion joint model

This result gives a first impression, on how expansion joints can influence the dynamic response of
a bridge caused by an earthquake. The spectral acceleration from this step by step time integration
would be 5.6 ms−2 without and 4.8 ms−2 with the expansion joint. Overall, this is a reduction of
over 14 %.
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5 CONCLUSIONS
It has been shown, how to achieve an efficient simulation for very large expansion joints. The
Python model was structured in a way, that heavy and often called workloads are compiled into ef-
ficient functions. The fact, that many stiff force elements are present, an implicit solver was neces-
sary to gain a stable result. This however introduced the need for the calculation of a Jacobian ma-
trix, which is very time consuming when using the standard methods of the given Python solvers.
A study on multiprocessing and limiting the number of threads used by the code showed that the
most efficient method is using multiprocessing and deactivate multithreading within Numpy. This
way, the Jacobi matrix evaluation time could be reduced from 90 s to 3 s, which is a significant
speedup. The overall simulation time for such a model is now reduced to few hours instead of
several days. The first results with a single DOF model representing a bridge showed very promis-
ing damping capabilities of the expansion joint. To investigate this behavior more deeply, several
parameter studies will be done in order to identify the dependency of geometry, bridge model,
friction parameters, ground motion and much more. The model is now efficient enough to deliver
fast and stable results.
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ABSTRACT

The formulation of constrained system dynamics using coordinate projection onto a
subspace locally tangent to the constraint manifold is revisited using the QR factoriza-
tion of the constraint Jacobian matrix to extract a suitable subspace, and integrating the
evolution of the QR factorization along with that of the constraint Jacobian matrix, as
the solution evolves. A true continuation algorithm is thus proposed for the subspace
of independent coordinates, which does not visibly affect the quality of the solution,
but avoids the artificial algorithmic discontinuities in the generalized velocities that
would result from arbitrary reparameterization of the coordinate set. This property
is exemplified by solving simple multi-degree-of-freedom problems with and without
the proposed continuation.

Keywords: Minimal Coordinate Set, Coordinate Projection, Automatic Coordinate
Reduction, QR Factorization.

1 INTRODUCTION
In mechanical system dynamics, unconstrained dynamics problems are usually formulated as a
set of second-order ordinary differential equations (ODE) that depend on a corresponding set of
coordinates. A convenient approximation to describe the interaction between the parts of the
system is often their idealization at a purely kinematic level, in form of algebraic relationships
between the coordinates of the parts. The addition of these algebraic equations turns the problem
into a system of differential-algebraic equations (DAE). The original coordinates are no longer
independent; the actual number of independent coordinates reduces to that of the truly independent
degrees of freedom. The enforcement of the constraints results in constraint reaction generalized
forces, usually formulated as Lagrange multipliers. They represent the (unknown) internal forces
whose value is whatever is required to guarantee the enforcement of the constraints. For a review
of the possible approaches, see for example [1].

The constrained dynamics problem can be solved either directly, in form of a system of DAEs,
where the original coordinates, augmented by the Lagrange multipliers, represent the unknowns
in the so-called redundant coordinate set (RCS) formulation or, through manipulations that will
be detailed in a later section, it can be transformed into the corresponding underlying ODE prob-
lem, reducing the set of coordinates to the truly independent (Lagrangian) ones, following the
so-called minimal coordinate set (MCS) formulation. For a review of the possible approaches, see
for example [2]. This paper focuses on this latter approach.

It is worth noticing that third approach is possible, i.e. to somehow embed the constraints in the
unconstrained problem, formally preserving the original structure and unknowns. See for example
the so-called Augmented Lagrangian approach [3] or the force projection method [4]. Also in
this case, the problem formally reduces to ODE, with all the related implications, opportunities

1Ping Zhou is currently a visiting PhD student at Politecnico di Milano.
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and limitations in terms of approaches for its numerical integration: explicit methods can be used,
subjected to conditional stability limitations.

It is recognized that the reduction of the original coordinates into the MCS may be a challenging
task, and that their nature is local, i.e. there may not exist a generally valid choice, which works
for all configurations of the system [5]. Being such choice local, when the coordinates need to be
redefined with respect to a new configuration discontinuities in the generalized coordinates (specif-
ically in their derivatives) are expected, although not related to any physical discontinuity in the
kinematics or dynamics of the system. Indeed, the motion with respect to the original coordinates
is not expected to show any discontinuity, the latter being mere artifacts of a redefinition of the
local coordinates. This work presents a well-known and effective method for selecting a subspace
of independent coordinates that is intrinsically tangent to the constraint manifold at a specific con-
figuration, based on the QR factorization of the constraint Jacobian matrix, and discusses how to
operate the redefinition of the coordinates’ subspace in a continuous manner, to eliminate those
unnecessary, formal discontinuities.

2 PROBLEM DESCRIPTION
2.1 Constrained Dynamics Problem Formulation
A generic constrained system dynamics problem is formulated by adding m (holonomic, in the
present case, and ideal) kinematic constraints, in form of the set of algebraic equations

c(x, t) = 0 (1)

with c ∈ Rm, to a set of n ordinary differential equations (n ≥ m, but usually n > m) that express
the dynamics of an unconstrained system of n coordinates x ∈ Rn,

Mẍ = f (2)

subjected to a set of generalized forces f ∈ Rn, energetically conjugated to a virtual perturbation
of the coordinates, δx. These equations are modified by the addition of the constraint reactions
fc =−cT

/xλλλ , as

Mẍ+ cT
/xλλλ = f (3)

where c/x = A ∈ Rm×n is the partial derivative of the constraint equations c with respect to the
coordinates x, namely the constraint Jacobian matrix, and λλλ ∈Rm are the corresponding Lagrange
multipliers.

2.2 Minimal Coordinate Set Approach
The Minimal Coordinate Set approach consists in defining a suitable subspace T∈Rn×(n−m) of the
space spanned by the coordinates x which is tangent to the constraint manifold, namely TT AT ≡
0 ∈ R(n−m)×m, such that

ẋ = Tq̇+βββ ′ (4a)

ẍ = Tq̈+βββ ′′ (4b)

where q ∈ Rn−m are local, truly independent coordinates, with βββ ′ and βββ ′′ defined accordingly, the
former being non-zero only in case of rheonomous constraints, such that

c/xẋ+ c/t = 0 → c/x
(
Tq̇+βββ ′

)
+ c/t = 0 → c/xβββ ′ =−c/t (5)

being c/xT = AT≡ 0, and analogously

c/xẍ+(ċ)/x ẋ+(ċ)/t = 0 → c/xβββ ′′ =−(ċ)/x ẋ− (ċ)/t (6)
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The constrained dynamics problem, projected in such subspace, yields

TT MTq̈+���TT AT λλλ = TT (f−Mβββ ′′
)

(7)

The solution is sought by first integrating Eq. (7) to obtain the generalized velocities q̇; then,
Eq. (4a) is integrated to obtain an estimate of x, which needs to be subsequently refined by enforc-
ing the constraint at the position level, Eq. (1).

2.3 QR Factorization for Optimal Minimal Coordinate Set Selection
Among the several approaches proposed in the literature [6], a suitable choice for T is obtained
through the QR factorization [7] of the transpose of the constraint Jacobian matrix,

AT = QR =
[

Q1 Q2
][ R1

0

]
= Q1R1 (8)

where matrix Q ∈ Rn×n is orthogonal and submatrix R1 ∈ Rm×m is upper triangular. Submatrix
Q2 ∈ Rn×(n−m) represents an optimal choice for T.

Velocities are then expressed as

ẋ = Q2q̇+Q1p′ (9)

with Q1p′ = βββ ′, such that

0 = Aẋ+ c/t = RT
1 QT

1
(
Q2q̇+Q1p′

)
+ c/t = RT

1 p′+ c/t → p′ =−R−T
1 c/t (10)

whereas accelerations are expressed as

ẍ = Q2q̈+Q1p′′ (11)

with Q1p′′ = βββ ′′, such that

0 = Aẍ+(ċ)/x ẋ+(ċ)/t = RT
1 QT

1
(
Q2q̈+Q1p′′

)
+(ċ)/x ẋ+(ċ)/t = RT

1 p′′+(ċ)/x ẋ+(ċ)/t

→ p′′ =−R−T
1

[
(ċ)/x ẋ+(ċ)/t

]
(12)

According to Eqs. (7) and (9), the problem becomes

QT
2 MQ2q̈ = QT

2
(
f−Mβββ ′′

)
(13a)

ẋ = Q2q̇+Q1p′ (13b)

Its integration from time tk to tk+1 yields

x(0)k+1 = Q2k
qk+1 +Q1k

p(0) (14)

where the subscript (·)(0) indicates an estimate of the final value, pending verification that it com-
plies with the constraint of Eq. (1). The final value of the unknown p results from the iterative
solution of

c(xk+1, tk+1) = 0 (15)

namely

c
(

x(i)k+1, tk+1

)
+
(
c/x
)(i)

k+1 Q1k
∆p = 0 (16)

i.e.

∆p =−
((

c/x
)(i)

k+1 Q1k

)−1
c
(

x(i)k+1, tk+1

)
(17)

p += ∆p (18)

where
(
c/x
)(i)

k+1 is the constraint Jacobian matrix at time tk+1 during the ith constraint enforcement

iteration, evaluated as a function of x(i)k+1.

https://doi.org/10.3311/ECCOMASMBD2021-166

186



2.4 Tangent Subspace Selection and Continuation
Submatrices Q1 and R1 are uniquely determined1, once A is known. Submatrix Q2, instead, is only
subjected to matrix Q’s general constraint of being orthogonal, namely QT

2 Q2 ≡ I ∈R(n−m)×(n−m)

and QT
2 Q1 ≡ 0 ∈ R(n−m)×m, but otherwise undefined. Specifically, it is defined in excess of post-

multiplication by an arbitrary orthogonal matrix, P∈R(n−m)×(n−m): Q̃2 = Q2P also complies with
the orthogonality requirement, since Q̃T

2 Q̃2 = PT QT
2 Q2P = PT P ≡ I and Q̃T

2 Q1 = PT QT
2 Q1 =

PT 0 = 0.

In fact, the QR factorization produces a “local” representation of the constraint Jacobian matrix;
as such, the generalized coordinates associated with the subspace T = Q2, which do not have any
specific physical meaning, represent a local reparameterization of the subspace of the coordinates
that is tangent to the constraint manifold. When the QR factorization is computed at different time
steps tk, if n−m > 1 the columns of the resulting Q2k

are completely unrelated, their resulting
value being solely dictated by the internal intricacies of the QR factorization algorithm.

The aim of the present work is to propose a simple and intuitive algorithm that tracks the evolution
of the subspace spanned by Q2 using a form of differential “continuation,” to preserve some sort
of spatial continuity of the generalized coordinates, q, by minimizing the amount of deviation of
the subspace that is intrinsically required to maintain Q2 tangent to the constraint manifold across
time steps, without altering the quality of the solution.

Consider the time derivative of the transpose of the constraint Jacobian matrix in its QR factorized
form,

ȦT
= Q̇R+QṘ (19)

The derivative of matrix Q may be expressed as Q̇ = QΩΩΩ, where the skew-symmetric nature of
matrix ΩΩΩ ∈ Rn×n descends from the orthogonality of matrix Q:

d
dt

(
QT Q

)
= Q̇T Q+QT Q̇ =

(
QT Q̇

)T
+QT Q̇ = 0 → QT Q̇ = ΩΩΩ (20)

When the problem is integrated numerically, the solution from time step tk to time step tk+1 is com-
puted. The QR factorization at time tk yields submatrices Q1k

and R1k . The generalized velocities
at time tk are computed with reference to the subspace spanned by Q2k

. After computing the solu-
tion at the new time step, the Jacobian matrix at time tk+1, Ak+1, is known. As such, through the
economy QR factorization of its transpose, submatrices Q1k+1

and R1k+1 are determined. Instead
of computing also submatrix Q2k+1

through the full QR factorization, the proposed continuation
algorithm is used as illustrated in the following. Consider

QT
1 ȦT R−1

1 = QT
1 Q̇1 + Ṙ1R−1

1 (21)

Matrix Ṙ1R−1
1 is the product of two upper triangular matrices, thus it is itself an upper triangular

matrix. Matrix QT
1 Q̇1 = ΩΩΩ1 ∈ Rm×m is skew-symmetric by construction; it can be seen as ΩΩΩ1 =

ΩΩΩ1L −ΩΩΩT
1L

, where ΩΩΩ1L = stril(ΩΩΩ1) is the strictly lower triangular part of matrix ΩΩΩ1, which can be
obtained as

ΩΩΩ1L = stril
(

QT
1 ȦT R−1

1

)
(22)

since stril
(
Ṙ1R−1

1

)
≡ 0 by construction, being Ṙ1R−1

1 upper triangular. From Eq. (20), one can
show that the derivative of matrix Q,

Q̇ =
[

Q̇1 Q̇2
]
=
[

Q1 Q2
]
[

ΩΩΩ1 −R−T
1 ȦQ2

QT
2 ȦT R−1

1 ��ΩΩΩ2

]

=
[

Q1 Q2
][ ΩΩΩ1 −ΩΩΩT

21
ΩΩΩ21 0

]
= QΩΩΩ (23)

1To this end, we choose the diagonal elements of R1 to be non-negative, a zero value indicating indetermination.
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is entirely known, where the bottom right block of the rightmost matrix, ΩΩΩ, should contain an
unknown skew-symmetric contribution ΩΩΩ2 ∈R(n−m)×(n−m), that is arbitrarily set to zero to modify
as little as possible the subspace Q2; specifically,

Q̇2 =−Q1ΩΩΩT
21 =−A+ȦQ2 (24)

In fact, ΩΩΩ2 may be interpreted as the angular velocity of subspace Q2, the rate of reorientation
with respect to itself, whereas ΩΩΩ12 expresses the rate of reorientation with respect to Q1, in order
to remain orthogonal to it.

Thus, the subspace Q2 can be integrated, taking appropriate measures (e.g. using Munthe-Kaas’
method [8]) to guarantee that the resulting matrix Q preserves orthogonality, and submatrix Q1
matches that resulting from the decomposition of the transpose of the constraint Jacobian matrix.
For example, for ΩΩΩ constant across a time step of duration tk+1− tk = h,

Qk+1 = QkeΩΩΩh (25)

or

Q2k+1
= e−A+ȦhQ2k

(26)

the latter being only a first-order approximation of the former, since the intrinsic skew-symmetric
structure of the exponent matrix ΩΩΩ is lost.

Submatrix Q2k+1
resulting from the proposed integration may need to be corrected to guarantee

orthogonality with respect to submatrix Q1k+1
obtained from the economy QR factorization of

AT
k+1.

3 RESULTS
Two simple examples, a spatial (3D) pendulum and a spin top, are analyzed to illustrate how the
proposed method produces a more regular and intuitive choice of the projection subspace during
the integration of the solution.

Spatial Pendulum Consider a simple point mass spherical pendulum of mass M and length `,
subjected to a uniform gravity field g = 9.81 m/s2, directed along the negative z axis. Its equations
of motion are




M 0 0
0 M 0
0 0 M







ẍ
ÿ
z̈



+




2x
2y
2z


λ =





0
0
−Mg



 (27a)

x2 + y2 + z2− `2 = 0 (27b)

The unconstrained problem has 3 degrees of freedom, x, y and z, and 1 constraint, Eq. (27a); thus,
the constrained problem has 2 degrees of freedom. Consequently, Q1 ∈R3×1 and Q2 ∈R3×2. The
constraint Jacobian matrix and its time derivative are

A =
[

2x 2y 2z
]

(28)

Ȧ =
[

2ẋ 2ẏ 2ż
]

(29)

The QR factorization of AT in a given initial configuration (x,y,z) = (x0,y0,z0) yields

AT =




2x0
2y0
2z0


=




x0/` q12 q13
y0/` q22 q23
z0/` q32 q33






2`
0
0


= QR (30)
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where the 6 coefficients qi j, i = 1,2,3, j = 2,3 are related by 5 orthogonality conditions, leaving
only one undetermined parameter.

Without loss of generality, let us assume that (x0,y0,z0) = (`,0,0), which complies with the con-
straint equation; this yields

AT =




2`
0
0


=




1 0 0
0 cosα0 −sinα0
0 sinα0 cosα0






2`
0
0


= QR (31)

where α0 is an arbitrary parameter. Clearly, when α0 = 0, the two vectors that span the subspace
of Q2 are the coordinate axes y and z.

The projected equations of motion in the initial configuration are:
[

M 0
0 M

]{
q̈1
q̈2

}
=

{
−sinα0
−cosα0

}
Mg (32)

Without loss of generality, it is assumed that (ẋ0, ẏ0, ż0) = (0,v0,0), which complies with the
derivative of the constraint equation in the initial configuration,

0 = Aẋ =
[

2` 0 0
]




0
v0
0



 (33)

in this case, one obtains

ΩΩΩ1L = 0 [as one would expect for a diagonal element of a skew-symmetric matrix] (34)

ΩΩΩ21 =

[
0 cosα0 sinα0
0 −sinα0 cosα0

]


0
2v0
0


 1

2`
=

[
cosα0
−sinα0

]
v0

`
(35)

thus

ΩΩΩ =
v0

`




0 −cosα0 sinα0
cosα0 0 0
−sinα0 0 0


 (36)

and

∆Q =




cos∆θ −sin∆θ cosα0 sin∆θ sinα0
sin∆θ cosα0 cos∆θ cosα2

0 − cosα2
0 +1 −sin(2α0)(cos∆θ −1)/2

−sin∆θ sinα0 −sin(2α0)(cos∆θ −1)/2 cos∆θ + cosα2
0 − cos∆θ cosα2

0


 (37)

with ∆θ = v0h/` which, for α0 = 0, reduces to

∆Q =




cos∆θ −sin∆θ 0
sin∆θ cos∆θ 0

0 0 1


 (38)

namely, a finite rotation about the z axis by an angle ∆θ .

In the present example, the mass of the pendulum is M = 1.0 kg, and its length is ` = 0.16 m.
The initial position of the mass center is r0 = [0.08,0,0]T m, and the initial condition is set as
v0 = 0.7895 m/s.
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Figure 1. Trajectory of the spatial pendulum’s center of mass: traditional and proposed QR
approach results are compared to those obtained from DAE integration using MBDyn.

Figure 2. Minimal coordinates qi, (i = 1,2): comparison of traditional and proposed QR
factorization method.

The trajectory of its center of mass resulting from the simulation using ode45 in Matlab with
h = 0.001 s is compared to that resulting from the integration of the original DAE governing equa-
tions using the free general-purpose multibody solver MBDyn2 [9], using a second-order accurate
implicit linear multistep integration method with algorithmic dissipation (asymptotic spectral ra-
dius ρ∞ = 0.6) [10], and a projection method based on the QR factorization of the transpose of
the Jacobian matrix performed at each time step, without any knowledge of its evolution, using
ode45 with a time step h = 0.000005 s to act as a reference solution, as shown in Fig. 1. The
resulting minimal set generalized coordinates q1 and q2 and the projected generalized velocities q̇1
and q̇2 (q̇i = Q2(:, i)T ẋ) are compared to the results obtained from what is here termed “traditional
QR method”, as shown in Fig. 2 and Fig. 3, respectively. One may observe that the coordinates
qi resulting from the proposed method are much more regular than those resulting from the tra-
ditional QR factorization. Specifically, those resulting from the proposed method appear to be
continuous and differentiable, whereas those resulting from the traditional QR factorization show
discontinuities in their first derivatives, q̇i.

This is well explained by the continuity and regularity of the evolution of each column of matrix

2https://www.mbdyn.org/.
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Figure 3. Projected velocities q̇i (i = 1,2): comparison of traditional and proposed QR fac-
torization method.

Q2 for the proposed method, compared to the discontinuity of those resulting from the traditional
QR factorization, as depicted in Fig. 4.

Furthermore, from Fig. 4 one can observe that for t = 0, the first column of matrix Q2 corresponds
to [0,1,0]T , i.e. the unit vector along the y axis, whereas the second column of matrix Q2 cor-
responds to [0,0,1]T , i.e. the unit vector along the z axis, i.e. the QR algorithm chose α0 = 0 in
Eq. (31) when initializing the subspace Q2. Indeed, considering the initial velocity of the spin top,
one can observe that q̇1(0)≡ v0 and q̇2(0)≡ 0, which is consistent with the given initial conditions.
At time t = 0, q̇1 corresponds to v, and q̇2 to w.

Spin Top Consider a symmetric spin top, whose tip is constrained to be at unit distance from
the origin of the global coordinate system, i.e. lying on a sphere of unit radius centered in the
origin. The tip of the spin top is 1 m far away from its center of mass. The problem is sketched
in Fig. 5. The inertia properties of the spin top are m = 30 kg and J = diag(90,90,30) kg·m2.
The initial position of the spin top is r0 = [0,−1,0]T m. The local coordinate system x′-y′-z′ is
initially coincident with the global coordinate system x-y-z. A uniform gravity field of magnitude
9.81 m/s2 is assumed in the negative z direction. In this model, the Euler parameters e are used to
describe the rotation of the spin top; their initial value is e0 = [1,0,0,0]T . The initial velocity is
ṙ0 = 0 m/s and the initial angular velocity is ω0 = [0.1,0.1,0.3]T rad/s. The initial derivative of
the Euler parameters ė0 is computed from 1/2 ·E(e0)ω0. The constrained equations of motion of
the spin top are

mr̈+ cT
r λ = f (39a)

4ET JEë+8ĖT JEω + cT
e λ +2eT µ = 2ET t (39b)

c(t,r,e) = 0 (39c)

eT e−1 = 0 (39d)

where f and t are the applied force and torque at the mass center, respectively. Since only gravity
is applied, f = (0,0,−9.81m) and t = 0, with

E =



−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0




c denotes the constraint equation, λ and µ are the Lagrange multipliers corresponding to the
constraint equation c, Eq. (39c), and the Euler parameter normalization, Eq. (39d), respectively.
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Figure 4. Q2(:, i) (i = 1,2) from the proposed (top) and the traditional QR method (bottom).

Figure 5. Spin top.
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Figure 6. Trajectory of the spin top’s center of mass: traditional and proposed QR approach
results are compared to those obtained from DAE integration using MBDyn.

The absolute position of the tip is rt = r+Au0, where u0 = [0,0,−1]T m and A = ĒET is the
orientation matrix, with

Ē =



−e1 e0 −e3 e2
−e2 e3 e0 −e1
−e3 −e2 e1 e0




Therefore, the constraint equation can be expressed as

c = rT
t rt −1 = rT r+2rT Au0 (40)

since uT
0 u0 ≡ 1. The problem is described by 7 coordinates, r ∈ R3 and e ∈ R4, and 2 constraint

equations, Eqs. (40) and (39d), thus possesses 5 degrees of freedom, qi (i = 1, . . . ,5).

The trajectory of the centroid resulting from the simulation using the previously mentioned method
with h = 0.0001 s is compared in Fig. 6 to those obtained by integrating the original DAE system
using MBDyn and by using the traditional QR method, with h = 0.0001 s. The projection motion
of qi (i = 1, . . . ,5) is compared to the results of the traditional QR method without any projec-
tion in Fig. 7, whereas that of q̇i (i = 1, . . . ,5) is compared to the results of the traditional QR
method without any projection in Fig. 8. Again, one can notice the much greater regularity of the
coordinates and their derivatives as they result from the proposed method.

4 CONCLUSIONS
This paper presented a continuation algorithm for the redefinition of the subspace of minimal co-
ordinates that is tangent to the constraint manifold. It is based on the full QR factorization of
the constraint Jacobian matrix to initialize the subspace through the portion of the space defined
by the orthogonal matrix Q that is orthogonal to the constraint Jacobian matrix. The economy
QR factorization is then used to exactly factor the subspace in which the constraint Jacobian lies,
while evolution of the tangent subspace is tracked by integrating the time derivative of matrix
Q, eventually re-orthogonalizing the result to eliminate possible drift from the integrated tangent
subspace. Numerical examples show that the result of the analysis is unchanged, but the general-
ized velocities do not show the discontinuities that characterize them when the tangent subspace
is recomputed without considering its previous value.
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Figure 7. Minimal coordinates qi (i = 1, . . . ,5): comparison of traditional and proposed QR
factorization method.
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Figure 8. Projected velocities q̇i (i = 1, . . . ,5): comparison of traditional and proposed QR
factorization method.
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ABSTRACT

We present an extension of the Livens variational principle (sometimes also referred to
as Hamilton-Pontryagin principle) to mechanical systems subject to holonomic con-
straints. The newly proposed principle embodies an index reduction in the spirit of the
often-applied GGL stabilization and thus may be termed “GGL principle”. The Euler-
Lagrange equations of the GGL principle assume the form of differential-algebraic
equations (DAEs) with differentiation index two. In contrast to the original GGL-
DAEs, the present formulation fits into the Hamiltonian framework of mechanics.
Therefore, the GGL principle facilitates the design of symplectic integrators. In par-
ticular, it offers the possibility to construct variational integrators. This is illustrated
with the development of a new first-order scheme which is symplectic by design. The
numerical properties of the newly devised scheme are investigated in a representative
example of a constrained mechanical system.

Keywords: Livens principle, Constrained dynamics, Gear-Gupta-Leimkuhler stabi-
lization, Index reduction, Variational integrators.

1 INTRODUCTION
Dynamical systems may be formulated in various ways. The well-known Lagrangian and Hamilto-
nian formalisms both consider descriptive energetic scalars and deploy certain operations on them
to generate the system’s equations of motion. Another formulation, which unifies both above-
mentioned formalisms by means of independent position, velocity and momentum quantities has
been proposed by Livens [1]. This Livens principle has been recently taken up by Bou-Rabee [2],
Yoshimura & Marsden [3] and Holm [4] under the name of Hamilton-Pontryagin principle due to
its close relation to the Pontryagin principle from the field of optimal control [5]. Livens principle
allows for an advantageous universal description due to its mixed character.

A large variety of dynamical systems are subject to constraints, which reduce the degrees of free-
dom of the system and impose some constraint function to be satisfied. When describing the sys-
tem with redundant coordinates, the equations of motion emerge as a set of differential-algebraic
equations (DAEs), which combine both differential equations and algebraic constraint equations.
It is to mention that the numerical treatment of DAEs requires some additional effort compared
to purely differential equations (cf. Kunkel & Mehrmann [6]). As the constraints have to hold at
every point in time (consistency condition), so-called secondary constraints for the position and
velocity quantities are induced.

In a vast majority of dynamical problems, one cannot find an analytical solution. Thus, in recent
times, the focus of scientific research has become to derive numerical integration methods, which
are capable of solving the equations of motion approximately. Therefore, the class of structure-
preserving integrators seeks to inherit the conservation principles of dynamical systems in a dis-
crete sense (cf. monographs such as Hairer et al. [7] or Leimkuhler & Reich [8]). The first
contributions can be traced back to symplectic methods (see e.g. de Vogelaere [9]). In the field
of mechanics, structure-preserving integration schemes can be mainly divided into two different
groups: variational integrators and energy-momentum integrators.
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Variational integrators approximate the action integral and are typically able to conserve the sym-
plectic structure as well as the system’s momentum maps in a discrete sense (cf. Lew & Mata
[10]). These are consequences of the variational procedure of derivation (cf. Marsden & West
[11]). The main idea to find discrete counterparts of the variational principles goes back to Maeda
[12]. Based on this concept, Marsden & West [11] provided a framework of discrete Lagrangian
and Hamiltonian mechanics. Until now, variational integrators have been developed for various
applications, e.g. for constrained dynamical systems (see e.g. Leyendecker et al. [13]).

Integration schemes for constrained dynamics typically only account for the constraints on config-
uration level (primary constraint) but not for the secondary constraints and thus have a differen-
tiation index of 3. This may lead to numerical instabilities, especially when singular points exist
(cf. Yoshimura [14]). By replacing the primary constraints on position level with the secondary
velocity-level constraints, DAEs with index 2 are obtained. Thus, the numerical problems can
be avoided but violations of the primary constraints are induced (cf. Yoshimura [14]). However,
this issue can be alleviated by extending the system of unknowns and coupling the secondary
constraints into the equations. The most famous technique, the Gear-Gupta-Leimkuhler (GGL)
stabilization, traces back to Gear et al. [15] in 1985 and is widely used until today. This classical
GGL formulation relies on the direct modification of the equations of motion. Yet, this proce-
dure leads to a destruction of the Hamiltonian structure such that most GGL stabilized integration
schemes are not symplectic.

To the best of the author’s knowledge, numerical integration schemes for constrained dynamics
have been formulated either in a Hamiltonian or in a Lagrangian way. Moreover, variational
integration schemes have not been yet constructed such that primary and secondary constraints are
considered at once. Thus, this work tries to fill both gaps by introducing a novel Livens-based
variational framework for the integration of dynamical systems accounting for both primary and
secondary constraints. In particular, the new framework makes possible to justify the commonly
used GGL formulation in a variational sense. Contrary to the original version, the newly proposed
formalism provides index 2 DAEs with a Hamiltonian structure. Moreover, the novel variational
principle opens up the possibility to develop new variational integration schemes with a GGL-type
stabilization.

2 FUNDAMENTALS
2.1 Livens principle
Consider a dynamical system with d degrees of freedom and positions qqq ∈ Rd . From Hamilton’s
principle of least action one can proceed by allowing the velocities to be independent variables
vvv ∈ Rd . Thus, the kinematic relation q̇qq = vvv has to be enforced by means of a Lagrange multiplier
ppp ∈ Rd . The corresponding augmented functional reads

S̃(qqq,vvv, ppp) =
∫ T

0
[L(qqq,vvv)+ ppp · (q̇qq− vvv)] dt , (1)

where L(qqq,vvv) is the Lagrangian. The functional (1) was firstly termed Livens principle (cf.
Sect. 26.2 in Pars [16]) after G.H. Livens who proposed this functional for the first time (cf. Livens
[1]). More recently, Marsden and co-workers [2, 3] coined the name Hamilton-Pontryagin princi-
ple for this functional due to its close relation to the classical Pontryagin principle from the field of
optimal control [5]. Due to its mixed character with three independent fields (qqq,vvv, ppp), it resembles
the Hu-Washizu principle from the area of elasticity theory (cf. Washizu [17]). Livens principle
unifies both Lagrangian and Hamiltonian viewpoints on mechanics and automatically accounts for
the Legendre transformation.

By stating the stationarity condition δ S̃(qqq,vvv, ppp) = 0 and executing the variations with respect to
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every independent variable, one obtains the equations of motion in the form

q̇qq = vvv , (2a)

ṗpp = D1L(qqq,vvv) , (2b)

ppp = D2L(qqq,vvv) . (2c)

With regard to (2c) the multiplier ppp can be identified as the conjugate momentum, which thus
directly emanates from the principle. Within the framework of Hamiltonian dynamics momentum
variables have to be defined a priori or emerge from the Legendre transformation as a fiber deriva-
tive of L(qqq, q̇qq). Note that after reinserting (2c) into (2b) and making use of (2a), Livens principle
traces back to the Lagrangian equations of the second kind.

For natural mechanical systems the Lagrangian takes the form

L(qqq,vvv) =
1
2

vvv ·MMMvvv−V (qqq) (3)

where MMM is the mass matrix and V (qqq) is a potential function. Now (2c) yields ppp = MMMvvv, so that (2a)
and (2b) can be rewritten as

q̇qq = MMM−1 ppp , (4a)

ṗpp =−DV (qqq) . (4b)

These equations correspond to the Hamiltonian form of the equations of motion. Making use of
the phase space vector zzz = [qqqT, pppT]T and the symplectic structure matrix

J=
[

000d×d IIId×d
−IIId×d 000d×d

]
, (5)

where IIId×d ∈ Rd×d denotes the d×d identity matrix, the Hamiltonian equations of motion read

żzz = JDH(zzz) (6)

where the standard Hamiltonian function corresponding to (3) is given by

H =
1
2

ppp ·MMM−1 ppp+V (qqq) . (7)

2.2 Symplectic structure of dynamics
Let us firstly introduce a bilinear and skew-symmetric function Ω : R2d×R2d → R acting on two
elements ξξξ ,ηηη ∈ R2d which assume an ordering of components as in the phase space vector, such
that exemplarily

ξξξ =
[
ξ (1)

1 ξ (2)
1 ... ξ (d)

1 ξ (1)
2 ξ (2)

2 ... ξ (d)
2

]T
. (8)

Bilinearity refers to the fact that Ω is linear in both arguments. Skew-symmetry implies that
Ω(ξξξ ,ηηη) =−Ω(ηηη ,ξξξ ). The canonical structure matrix introduced in (5) gives rise to the symplectic
two-form

Ω(ξξξ ,ηηη) = ξξξ ·J−1ηηη . (9)

A map ΨΨΨ : R2d→ R2d is called symplectic if it leaves the symplectic two-form Ω invariant in the
sense that

Ω(DΨΨΨ(zzz)ξξξ ,DΨΨΨ(zzz)ηηη) = Ω(ξξξ ,ηηη) , (10)
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q q

p p

ΨΨΨ(zzz)

ξξξ
ηηη

DΨΨΨ(zzz)ξξξ

DΨΨΨ(zzz)ηηη

Figure 1. Symplectic area preservation for d = 1 (inspired by Hairer et al. [7])

where the original two-form is equal to the two-form of the transports of ξξξ and ηηη under the
linearization of ΨΨΨ. Fig. 1 displays the mapping of elements ξξξ and ηηη by ΨΨΨ and the preservation
of the symplectic two-form, representing the oriented area for d = 1. Making use of the definition
(9), the last equation leads to a symplecticness condition that reads

DΨΨΨ(zzz)TJ−1DΨΨΨ(zzz) = J−1 . (11)

The wedge product of two differential one-forms daaa ∈ Rd and dbbb ∈ Rd acting on any two vectors
ξξξ , ηηη ∈ R2d is given by (cf. Leimkuhler & Reich [8])

(daaa∧ dbbb)(ξξξ ,ηηη) =
d

∑
i=1

(dai∧ dbi)(ξξξ ,ηηη) =
d

∑
i=1

(dbi(ξξξ )dai(ηηη)− dai(ξξξ )dbi(ηηη)) . (12)

Thus, the symplectic two form (9) can be rewritten in terms of the wedge product as

Ω(ξξξ ,ηηη) =
d

∑
i=1

dqi∧ dpi (ξξξ ,ηηη) , (13)

where the differential one-forms dqi, dpi extract the i-th coordinate or momentum component,
respectively, such that

dqi(ξξξ ) = ξ (i)
1 , dpi(ξξξ ) = ξ (i)

2 . (14a)

Omitting the arguments, the symplectic two-form can be rewritten more briefly in vector notation
as

Ω= dqqq∧ dppp . (15)

Note that this representation is only a briefer notation of (13) that still accounts for the summation
of the wedge product of scalar one-forms. One can show that Hamiltonian flow maps are symplec-
tic. Thus, it is equivalent to say that the symplectic two-form (15) is conserved along solutions of
the Hamiltonian equations of motions (6), viz.

d
dt
Ω=

d
dt

(dqqq∧ dppp) = 0 . (16)

For differential one-forms, given in vector notation as daaa,dbbb and dccc ∈ Rd , any scalar valued
quantities α,β ∈ R, any matrix AAA ∈ Rd×d and any symmetric matrix BBB = BBBT ∈ Rd×d the wedge
product defined in (12) has the following properties (see, for example, Leimkuhler & Reich [8]):

daaa∧ dbbb =−dbbb∧ daaa , (17a)

daaa∧ (α dbbb+β dccc) = α daaa∧ dbbb+β daaa∧ dccc , (17b)

daaa∧ (AAAdbbb) = (AAAT daaa)∧ dbbb , (17c)

daaa∧ (BBBdaaa) = 0 . (17d)
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2.3 GGL method for constrained mechanical systems
Assume that the coordinates qqq are redundant due to the presence of m independent scleronomic,
holonomic constraints gk : Rd → R (k = 1, . . . ,m). The constraints can be comprised in a column
vector ggg ∈ Rm, such that

ggg(qqq) = 000 . (18)

Since all constraint functions shall be independent, the constraint Jacobian GGG(qqq) = Dggg(qqq) is of
rank m. As (18) is true for any point in time, the time derivative has to vanish accordingly (consis-
tency condition). Thus, the constraints on velocity level or secondary constraints

d
dt

ggg(qqq) = GGG(qqq)q̇qq = 000 (19)

are induced. It is well-known that the motion of the constrained mechanical systems under con-
sideration is governed by differential-algebraic equations (DAEs) which have differentiation index
ν = 3. These equations of motion can be derived with a variational approach, which augments
Livens principle (1). Accordingly, introducing Ŝ(qqq,vvv, ppp,λλλ ) = S̃(qqq,vvv, ppp)+

∫ T
0 λλλ · ggg(qqq)dt, stating

the stationary condition δ Ŝ(qqq,vvv, ppp,λλλ ) = 0 and eliminating the velocities as above leads to an ex-
tension of the Hamiltonian equations (4) for constrained systems, such that the index-3 DAEs are
obtained as

q̇qq = MMM−1 ppp , (20a)

ṗpp =−DV (qqq)−GGG(qqq)Tλλλ , (20b)

000 = ggg(qqq) . (20c)

The classical GGL stabilization, which traces back to Gear et al. [15], represents an index reduc-
tion technique by minimal extension (see Kunkel & Mehrmann [6]). The main idea of the GGL
stabilization is to couple the secondary constraints into the dynamics by making use of additional
variables γγγ ∈ Rm, such that the system of equations of motion is extended and the differentiation
index drops to ν = 2. Correspondingly, the numerical ill-conditioning of index-3 DAEs are allevi-
ated without having the drawback of drift phenomena. The resulting index-2 DAEs can be written
in the form

q̇qq = MMM−1 ppp+GGG(qqq)Tγγγ , (21a)

ṗpp =−DV (qqq)−GGG(qqq)Tλλλ , (21b)

000 = ggg(qqq) , (21c)

000 = GGG(qqq)MMM−1 ppp . (21d)

Ever since, the GGL stabilization has been widely used and is thus of great importance. Numerical
methods can be constructed directly by discretizing the DAEs (21). Note, however, that due to the
GGL modification of the kinematic equation (21a), the system (21) loses its Hamiltonian structure.
For the time-continuous case, some algebra leads to γγγ = 000. Consequently, the GGL-DAEs boil
down to the standard formulation (20).

3 GGL PRINCIPLE
3.1 Governing equations
The newly proposed GGL principle relies on a generalization of Livens principle (1) by con-
sidering Lagrange multipliers λλλ ,γγγ ∈ Rm to enforce the primary constraints (18) and secondary
constraints (19), respectively. Imposing stationarity on a corresponding augmented action integral

δSGGL(qqq,vvv, ppp,λλλ ,γγγ) = 0 (22)

https://doi.org/10.3311/ECCOMASMBD2021-125

201



with

SGGL =
∫ T

0

[
L(qqq,vvv)−λλλ ·ggg(qqq)+ ppp · (q̇qq− vvv−MMM−1 GGG(qqq)T γγγ)

]
dt , (23)

yields the stationarity conditions
∫ T

0
δ ppp ·

(
q̇qq− vvv−MMM−1 GGG(qqq)T γγγ)

)
dt = 0 , (24a)

∫ T

0

(
D1L(qqq,vvv) ·δqqq−GGG(qqq)Tλλλ ·δqqq+ ppp ·δ q̇qq− ppp ·MMM−1δGGG(qqq)Tγγγ

)
dt = 0 , (24b)

∫ T

0
δvvv · (D2L(qqq,vvv)− ppp) dt = 0 , (24c)

∫ T

0
δλλλ ·ggg(qqq)dt = 0 , (24d)

∫ T

0
ppp ·MMM−1 GGG(qqq)T δγγγ dt = 0 . (24e)

As one can see, relation (24b) requires some more effort in order to achieve the final Euler-
Langrange equation. Therefore, δ q̇qq can be replaced through integration by parts such that

∫ T

0
ppp ·δ q̇qqdt =−

∫ T

0
δqqq · ṗppdt +δqqq(T ) · ppp(T )−δqqq(0) · ppp(0) . (25)

The endpoint conditions on admissible variations δqqq(0) = δqqq(T ) = 0 make the latter two terms
vanish. Furthermore, the variation of the gradient of the constraint functions can be executed as

δGGG(qqq) = DGGG(qqq)δqqq = D2ggg(qqq)δqqq . (26)

In order to avoid the third order expression D2ggg(qqq), the stationary condition (24b) can be written
in terms of the individual constraint functions gk(qqq) for k = 1, ...,m. Thus, the variation of the
constraint gradients is given by

δ (Dgk(qqq)) = D2gk(qqq)δqqq , (27)

where the constraint Hessian D2gk(qqq) ∈ Rd×d . Consequently, the arbitrariness of the variations
δqqq, δvvv, δ ppp, δλλλ and δγγγ can be taken into account such that the governing DAEs are deduced as

q̇qq = vvv+MMM−1GGG(qqq)Tγγγ , (28a)

ṗpp = D1L(qqq,vvv)−GGG(qqq)Tλλλ −
m

∑
k=1

γkD2gk(qqq)MMM−1 ppp , (28b)

ppp = D2L(qqq,vvv) , (28c)

000 = ggg(qqq) , (28d)

000 = GGG(qqq)MMM−1 ppp . (28e)

Thus equations in the fashion of the standard GGL stabilization (21) are obtained with an ad-
ditional term in the momentum equation. Note that (28c) represents the fiber derivative of the
newly proposed variational principle, such that the Lagrange multiplier ppp denotes the conjugate
momenta. By introducing the secondary constraints to the functional, the resulting Euler-Lagrange
equations are DAEs with index ν = 2, similarly to the GGL stabilized equations of motion,
whereas the standard DAEs of constrained dynamics have index ν = 3. Thus, the newly estab-
lished DAEs (28) can be regarded as an extension to the classical GGL stabilization. Similar to
the classical GGL stabilization one obtains γγγ = 000 for the time-continuous case. However, the
third term on the right-hand side of (28b) is of crucial importance as it maintains the Hamiltonian
structure of the equations of motion, in contrast to the classical GGL method.
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3.2 Hamiltonian structure
The equations of motion induced by the GGL principle have Hamiltonian structure, viz.

q̇qq =+D2HGGL(qqq, ppp,λλλ ,γγγ) , (29a)

ṗpp =−D1HGGL(qqq, ppp,λλλ ,γγγ) , (29b)

000 =+D3HGGL(qqq, ppp,λλλ ,γγγ) , (29c)

000 =+D4HGGL(qqq, ppp,λλλ ,γγγ) , (29d)

with a corresponding augmented Hamiltonian

HGGL(qqq, ppp,λλλ ,γγγ) =
1
2

ppp ·MMM−1 ppp+V (qqq)+λλλ ·ggg(qqq)+ γγγ ·GGG(qqq)MMM−1 ppp . (30)

The above equations can be related to the Euler-Lagrange equations (28) of the GGL functional
after elimination of the velocities by employing the Legendre transformation (28c). Next, we show
that the equations of motion of the novel framework conserve the Hamiltonian exactly. For that
purpose, we compute the time derivative of the augmented Hamiltonian (30) such that

d
dt

HGGL = D1HGGL · q̇qq+D2HGGL · ṗpp+D3HGGL · λ̇λλ +D4HGGL · γ̇γγ

= D1HGGL ·D2HGGL−D2HGGL ·D1HGGL +000 · λ̇λλ +000 · γ̇γγ = 0 , (31)

where the Hamiltonian equations of motion (29) have been considered. As the augmented Hamil-
tonian (30) is conserved along solutions of the equations of motion, also the Hamiltonian H itself
is conserved since both constraints on configuration level and momentum level are identically zero
such that Ḣ = 0. In contrast to the originial GGL formulation (cf. Sect. 2.3), this conservation law
holds regardless of the actual value of the Lagrange multipliers γγγ .

3.3 Symplectic structure
We show that the GGL functional inherits the symplectic structure of Hamiltonian systems and
thus the symplectic two-form is conserved along solutions of (28) or (29), respectively. We begin
by deriving the total differentials based on the equations of motion as

dq̇qq = D2
21H(qqq, ppp)dqqq+D2

22H(qqq, ppp)dppp+ d
(
D2gggv(qqq, ppp)Tγγγ

)
, (32a)

dṗpp =−D2
11H(qqq, ppp)dqqq−D2

12H(qqq, ppp)dppp− d
(
Dgggq(qqq)Tλλλ

)
− d

(
D1gggv(qqq, ppp)Tγγγ

)
, (32b)

000 = Dgggq(qqq)dqqq , (32c)

000 = D1gggv(qqq, ppp)dqqq+D2gggv(qqq, ppp)dppp , (32d)

where we have introduced the distinct functions gggq(qqq) = ggg(qqq) for the holonomic constraint on
configuration level and gggv(qqq, ppp) = Dggg(qqq)MMM−1 ppp for the corresponding constraint on momentum
level. It is straightforward to compute the temporal evolution of Ω by means of the product rule
such that

d
dt
Ω= dq̇qq∧ dppp+ dqqq∧ dṗpp , (33)

into which the above differential equations (32a) and (32b) can be inserted. One can consider the
symmetry of the Hessian of H and make use of the properties of the wedge product. Note that
D2

11H and D2
22H both are symmetric matrices, such that

D2
22H(qqq, ppp)dppp∧ dppp = 0 , (34)

−dqqq∧D2
11H(qqq, ppp)dqqq = 0 , (35)
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due to property (17d). Moreover, the two terms with the off-diagonal entries of the Hessian of H
cancel each other out, because

D2
21H(qqq, ppp)dqqq∧ dppp = (D2

12H(qqq, ppp))T dqqq∧ dppp = dqqq∧D2
12H(qqq, ppp)dppp , (36)

where in the last equation property (17c) has been used. The term stemming from the primary
constraints can be written as

d
(
Dgggq(qqq)Tλλλ

)
∧ dqqq = Dgggq(qqq)T dλλλ ∧ dqqq+

m

∑
k=1

λkD2gk(qqq)dqqq∧ dqqq = dλλλ ∧Dgggq(qqq)dqqq = 0 , (37)

where again (17c) and (17d) have been used along with (32c). Therefore, all terms emerging from
the right-hand side of (33) cancel out except for those containing the constraint on momentum
level gggv(qqq, ppp). We therefore obtain

d
dt
Ω= d

(
D2gggv(qqq, ppp)Tγγγ

)
∧ dppp− dqqq∧ d

(
D1gggv(qqq, ppp)Tγγγ

)
(38)

= D2gggvT dγγγ ∧ dppp+D1gggvT dγγγ ∧ dqqq+
m

∑
k=1

γkD2
12gv

k dqqq∧ dppp+
m

∑
k=1

γkD2
21gv

k dppp∧ dqqq

= dγγγ ∧ (D1gggv(qqq, ppp)dqqq+D2gggv(qqq, ppp)dppp)+
m

∑
k=1

γk
(
D2

12gv
k− (D2

21gv
k)

T) dqqq∧ dppp = 0 ,

where the first term vanishes in view of the total differential of the secondary constraint (32d) and
the second one cancels due to the symmetry of the Hessian of gv

k . Note that it has been taken into
account that terms including D2

11gv
k and D2

22gv
k , respectively, cancel due to their symmetry. This

proofs the symplecticness of the equations of motion emanating from the GGL functional. Again
this property does not depend on the Lagrange multiplier γγγ , which is an advantage over the original
GGL method by Gear et al. [15], for which γγγ = 000 is required in order to conserve Ω.

4 GGL VARIATIONAL INTEGRATOR
We next illustrate how the GGL principle introduced in Section 3 can be employed to derive a vari-
ational integrator. Subsequently, structure-preserving properties of the newly devised variational
integrator will be considered.

4.1 Governing Equations
Let us construct a time-stepping scheme by means of a direct discretization of the GGL functional
(23). Enforcing the constraint on configuration level in the endpoint and the constraint on mo-
mentum level in an intermediate state and discretizing the velocity by means of an explicit Euler
method, we obtain the discrete action integral

Sd =
N−1

∑
n=0

[
hL(qqqn,vvvn)−hλλλ n+1 ·ggg(qqqn+1)+ pppn+1 ·

(
qqqn+1−qqqn−hvvvn−hMMM−1GGG(q̄qq)Tγγγn+1)] , (39)

where the configuration variable q̄qq = qqqn +hvvvn has been introduced. Stationarity conditions can be
applied directly to the discrete functional, yielding

N−1

∑
n=0

δ pppn+1 ·
(
qqqn+1−qqqn−hvvvn−hMMM−1GGG(q̄qq)Tγγγn+1)= 0 , (40a)

N−1

∑
n=0

δqqqn ·
(

hD1L(qqqn,vvvn)− pppn+1−h
m

∑
k=1

γn+1
k D2gk(q̄qq)MMM−1 pppn+1

)
(40b)

+
N−1

∑
n=0

δqqqn+1 ·
(
−hGGG(qqqn+1)Tλλλ n+1 + pppn+1

)
= 0 ,

N−1

∑
n=0

δvvvn ·
(

hD2L(qqqn,vvvn)−h pppn+1−h2
m

∑
k=1

γn+1
k D2gk(q̄qq)MMM−1 pppn+1

)
= 0 , (40c)

https://doi.org/10.3311/ECCOMASMBD2021-125

204



along with
N−1

∑
n=0

δλλλ n+1 ·ggg(qqqn+1) = 0 , (40d)

N−1

∑
n=0

δγγγn+1 ·GGG(q̄qq)MMM−1 pppn+1 = 0 . (40e)

Applying an index shift in the second part of (40b) from n+ 1 to n and taking into account the
arbitrariness of all variations, we obtain the discrete EL equations

qqqn+1−qqqn = hvvvn +hMMM−1GGG(q̄qq)Tγγγn+1 , (41a)

pppn+1− pppn = hD1L(qqqn,vvvn)−hGGG(qqqn)Tλλλ n−h
m

∑
k=1

γn+1
k D2gk(q̄qq)MMM−1 pppn , (41b)

D2L(qqqn,vvvn) =

(
IIId×d +h

m

∑
k=1

γn+1
k D2gk(q̄qq)MMM−1

)
pppn+1 , (41c)

ggg(qqqn+1) = 000 , (41d)

GGG(q̄qq)MMM−1 pppn+1 = 000 , (41e)

for n = 0, ...,N − 1. In total we have obtained a set of (3d + 2m) equations for the unknowns
(qqqn+1, pppn+1,vvvn,λλλ n,γγγn+1) in every time step. These are discrete counterparts of the continuous
EL equations given in (28). It is advantageous that, due to the enhancement of the discrete action
integral, the secondary constraints are now taken into account as well (cf. relation (41e)). Note that
relation (41c) can be interpreted as the discrete fiber derivative of the Legendre transformation,
which links velocity and momentum quantities. It is worth mentioning that scheme (41) can be
regarded as generalization to constrained mechanical systems of the symplectic Euler method (see
Hairer et al. [7] and Euler-B in Leimkuhler & Reich [8]).

4.2 Conservation Properties
It is clear that the primary constraints are correctly captured in every time step by design (see
relation (41d)). The secondary constraints are enforced in an intermediate sense (cf. (41e)).

Moreover, we can show that the integrator governed by (41) is symplectic. In order to demonstrate
this, we calculate the differentials of (41a) to (41c). This yields

dqqqn+1− dqqqn = h dvvvn +h d
(
D2gggv(q̄qq, pppn+1)Tγγγn+1) , (42a)

dpppn+1− dpppn = hD2
11L(qqqn,vvvn)dqqqn−h d

(
GGG(qqqn)Tλλλ n)−h d

(
D1gggv(q̄qq, pppn+1)Tγγγn+1) (42b)

D2
22L(qqqn,vvvn)dvvvn = dpppn+1 +h d

(
D1gggv(q̄qq, pppn+1)Tγγγn+1) . (42c)

where gggv(q̄qq, pppn+1) = GGG(q̄qq)MMM−1 pppn+1 has been introduced in analogy to the continuous case. More-
over, D2

12L(qqqn,vvvn) = D2
21L(qqqn,vvvn)T = 000 as been taken into account which is valid for Lagrangians

of the form (3). The differential forms of the constraint equations (41d) and (41e) read

dggg(qqqn+1) = GGG(qqqn+1)dqqqn+1 = 000 , (43a)

dgggv(q̄qq, pppn+1) = D1gggv(q̄qq, pppn+1)dq̄qq+D2gggv(q̄qq, pppn+1)dpppn+1 = 000 . (43b)

Now, making use of the skew-symmetry of the wedge product, property (17a), one can deduce that

dpppn+1∧ (dqqqn+1− dqqqn)+(dpppn+1− dpppn)∧ dqqqn = dqqqn∧ dpppn− dqqqn+1∧ dpppn+1 . (44)

Substituting from (42a) and (42b) into the last equation, we obtain

dqqqn∧ dpppn− dqqqn+1∧ dpppn+1 = dpppn+1∧h dvvvn +h dpppn+1∧ d
(
D2gggv(q̄qq, pppn+1)Tγγγn+1) (45)

+hD2
11L(qqqn,vvvn)dqqqn∧ dqqqn−h d

(
GGG(qqqn)Tλλλ n)∧ dqqqn−hd

( m

∑
k=1

γn+1
k D1gggv

k(q̄qq, pppn+1)
)
∧ dqqqn .
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We next insert dpppn+1 from (42c) into the first term on the right-hand side of (45). Moreover, the
third term on the right-hand side of (45) vanishes due to property (17d) of the wedge product. The
fourth one vanishes in analogy to relation (37). Consequently, we obtain

dqqqn∧ dpppn− dqqqn+1∧ dpppn+1 =
(

D2
22L(qqqnvvvn)dvvvn−hd

( m

∑
k=1

γn+1
k D1gggv

k(q̄qq, pppn+1)
))
∧h dvvvn

+h dpppn+1∧ d
(
D2gggv(q̄qq, pppn+1)Tγγγn+1)−hd

( m

∑
k=1

γn+1
k D1gggv

k(q̄qq, pppn+1)
)
∧ dqqqn (46)

The symmetric matrix multiplication property of the wedge product (17d) can be used once more
to cancel the first term on the right-hand side of (46). Moreover, it is possible to collect the second
and fourth term, yielding

dqqqn∧ dpppn− dqqqn+1∧ dpppn+1 = (47)

−hd
( m

∑
k=1

γn+1
k D1gggv

k(q̄qq, pppn+1)
)
∧ dq̄qq+h dpppn+1∧ d

(
D2gggv(q̄qq, pppn+1)Tγγγn+1)

Executing the remaining differentials leads to the expression

dqqqn∧ dpppn− dqqqn+1∧ dpppn+1 = (48)
(
D1gggv(q̄qq, pppn+1)dq̄qq

)
∧h dγγγn+1 +

(
D2gggv(q̄qq, pppn+1)dpppn+1)∧h dγγγn+1

−h
m

∑
k=1

γn+1
k D2

12gv
k(q̄qq, pppn+1)dpppn+1∧ dq̄qq+hdpppn+1∧

m

∑
k=1

γn+1
k D2

21gv
k(q̄qq, pppn+1)dq̄qq

In analogy to the proof given in Sect. 3.3, terms including D2
11gv

k and D2
22gv

k , respectively, cancel
due to their symmetry. It becomes obvious that the last two terms on the right-hand side of (48)
cancel each other out due to (17c) since (D2

12gv
k)

T = D2
12gv

k . The first two terms on the right-hand
side of (48) can be collected such that (43b) can be taken into account. Eventually, the whole
expression on the right-hand side of (48) vanishes and we obtain

dqqqn∧ dpppn = dqqqn+1∧ dpppn+1 , (49)

which shows that the present scheme is indeed symplectic.

5 NUMERICAL EXAMPLE
The objective of this subsection is to analyze the behavior of the previously derived symplectic
method by means of a numerical example. We investigate the motion of a rigid body according to
a director framework which has already been used by Betsch & Steinmann [18], Krenk & Nielsen
[19] and many others. This formulation describes rigidity using the orthonormality condition of
three directors {dddi} positioned in the center of mass ϕϕϕ . Consequently, every point is uniquely
defined by its material coordinates Xi with respect to the director frame’s origin such that we are
able to express the spatial placement as a function of the material coordinates and time such that

xxx(XXX , t) = ϕϕϕ(t)+Xidddi(t) , (50)

where the summation convention applies. Eventually, it is possible to describe the motion of the
rigid body by n = 3+9 = 12 redundant coordinates accumulated in the coordinate vector

qqq =




ϕϕϕ
ddd1
ddd2
ddd333


 . (51)
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Figure 2. Initial configuration of the gyroscopic top

This framework consequently allows for a representation of the system’s Lagrangian in the stan-
dard fashion (3) with the constant and diagonal mass matrix

MMM =




mIII 000 000 000
000 E1III 000 000
000 000 E2III 000
000 000 000 E3III


 , (52)

where principle values of the Euler tensor can be computed with the principal moments of inertia
as Ei = 1/2(J j + Jk− Ji) for even permutations of the indices (i, j,k). The primary constraints
enforce the directors to stay orthonormal for all times due to the rigidity of the body, viz.

ggg(qqq) = g̃gg({dddi}) =




1
2(ddd1 ·ddd1−1)
1
2(ddd2 ·ddd2−1)
1
2(ddd3 ·ddd3−1)

ddd1 ·ddd2
ddd1 ·ddd3
ddd2 ·ddd3



= 000 . (53)

Specifically in this example, a gyroscopic top, as depicted in Fig. 2, has been investigated for a
total simulation time of T = 2s with a time step size of h = 0.002s computed with the symplectic
variational integrator from Sect. 4.

The total mass of the top amounts to m = 0.7069kg and the momenta of inertia read J1 = J2 =
J3 = 5.3014 · 10−4 kgm2 which corresponds to a cylinder with mass density ρ = 2700kg/m3,
height a = 0.1m, top radius r = a/2 and a location of the center of mass along the symmetry axis
l = 3/4a. In this case, the momenta of inertia can be computed via

J1 = J2 =
3
80

m(4r2 +a2) , J3 =
3
10

mr2 , (54a)

and the total mass is given by m = 1
3 ρπr2a. Gravitation acts in the negative eee3-direction with

bbb = [0 , 0 ,−9.81m/s2]T such that the potential energy of the system only depends on the position
of the center of mass ϕϕϕ , viz.

V (qqq) = V̂ (ϕϕϕ) =−mbbb ·ϕϕϕ . (55)

It is crucially important that the top is subject to an additional constraint

gcm(qqq) = ϕϕϕ− lddd3 = 0 , (56)
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which fixes the tip of the gyroscopic top to the origin of {eeei} by enforcing that the center of mass
is located on the axis of symmetry with a distance of l to the origin. The initial nutation angle is
α0 = π/3 and the gyroscopic top is subject to an initial angular velocity vector

ωωω0 = ωp eee3 +ωs ddd3 , (57)

where the initial precession rate is chosen as ωp = 10s−1 and the initial spin rate for the case of
steady precession can be computed via the relation

ωs =
mgl
J3 ωp

+
J1 +ml2− J3

J3
ωp cos(α0) (58)

(cf. p. 221 in Goldstein [20]), which amounts to ωs = 135.6s−1 for the present case. Note that
g = 9.81m/s2 denotes the magnitude of gravitational acceleration here. The transformation from
the global eeei coordinate system to the initially inclined system can easily be done by the use of
a rotation matrix RRR0 ∈ SO(3) with the well-known property RRRT

0 = RRR−1
0 . For the present case this

reads

RRR0 =




1 0 0
0 cos(α0) −sin(α0)
0 sin(α0) cos(α0)


 , (59)

which prescribes a rotation about the eee1-axis with the angle α0 as can be seen in Fig. 2. Thus,
the initial velocities of the center of mass and the directors can be computed by taking the cross
product with the initial configuration

ϕ̇ϕϕ(t = 0) = ωωω0×ϕϕϕ(t = 0) , ḋddi(t = 0) = ωωω0×dddi(t = 0) , (60a)

where ωωω0 can be transformed to the global coordinate system first with the aid of RRR0 to simplify
the computation. The Newton’s method’s tolerance has been set to εtol = 10−9. The computation
has been performed using the metis code, which is available at [21].

By ensuring the condition for a steady precession (58) the center of mass is rotating on a constant
height ϕ3 around the vertical axis since gravitational forces and restabilizing effects due to the
rotation are in an equilibrium. The horizontal coordinate of the center of mass ϕ3 can thus be
regarded as an analytical reference to the solutions. The results given by the symplectic integration
scheme oscillates around this analytical solution, as can be seen in Fig. 10.

The evolution of the energetic quantities T,V, and H is shown in Fig. 3. The total energy of the
system is not conserved identically along the solutions of this integration scheme as it can be seen
in Fig. 5 which displays the increments in H from one time step to another. However, as it is typical
for symplectic methods (cf. Fig. 16 in Lew & Mata [10]), H(t) oscillates around its true value and
the energy error remains stable. Furthermore, as the gyroscopic top is subject to external forces
acting in the eee3-direction, the symmetry of the system reduces to a conservation of the angular
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momentum about the eee3-axis such that L3 = constant. This is correctly captured by the symplectic
method and can be seen in Fig. 4. Differences in L3 from one point in time to another are close to
computer precision (cf. Fig. 6).

By design, the constraints on configuration level are identically fulfilled which can be observed in
Fig. 7. In contrast to that, in each time step the secondary constraints are merely enforced in an
intermediate configuration leading to the results depicted in Fig. 8.

We can moreover analyze the h-convergence of the symplectic variational integrator. Therefore
we have investigated the relative error in the vertical coordinate of the center of mass, which is
supposed to remain constantly φ3,ana = 0.0375m, after a total simulation time of t = 0.001s for
various time step sizes. In Fig. 9 we display the relative error

e =
|ϕ3(t = 0.001s)−ϕ3,ana|

ϕ3,ana
(61)

for the different time step sizes h. It becomes visible that the present method is first order accurate.
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6 CONCLUSION AND OUTLOOK
In this work, a new variational principle for the analysis of constrained dynamics has been pro-
posed. The underlying functional takes account of both primary and secondary constraints. Due to
its mixed character with independent position, velocity and momentum quantities, it generalizes
Livens principle [1] and thus unites Lagrangian and Hamiltonian viewpoints. By coupling con-
straints on position and velocity level into the equations we have obtained a set of DAEs which can
be regarded as an extension of the well-known GGL stabilization [15]. Contrary to the original
formulation, however, the emanating equations of motion have Hamiltonian structure.

The novel GGL functional gives rise to DAEs with differentiation index 2 and thus circumvents
the numerical problems of the standard index-3 DAEs pertaining to mechanical systems subject
to holonomic constraints. We could show, that the formulation is symplectic and has Hamiltonian
structure. The conservation principles of constrained dynamics can be carried over to the novel
augmented formulation. We have demonstrated that, in analogy to the classical GGL formulation
[15], in the time-continuous case the additional Lagrange multipliers need to vanish. However, in
contrast to the original GGL formulation, this property is not required to retain the conservation
of the Hamiltonian and the symplectic structure.

Based on the newly proposed variational principle, we have succesfully derived a new first-order
variational integrator. This integrator satisfies the primary constraints and is capable to conserve
the angular momentum of the system. We could show that the method is symplectic which is a
typical property of variational integrators (cf. Marsden & West [11]). The secondary constraints
have been taken into account in an intermediate sense.

The novel variational framework represents a promising basis for the construction of structure-
preserving integration schemes. The method which has been deduced throughout this work can
thus be seen as a starting point for further developments. In particular, due to the close relationship
of the GGL principle to optimal control, previously developed direct methods based on the phi-
losophy “first discretize then optimize” (see, for example, Betsch & Becker [22]) can be used to
obtain higher-order variational integrators for constrained mechanical systems. These integrators
are symplectic by design. Furthermore, slight modifications can be applied to obtain energy-
momentum consistent integrators which represent another important class of structure-preserving
time-stepping schemes.
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ABSTRACT
The authors’ previously published results on a nonholonomic momentum form of
Kane’s equations are extended from scleronomic to rheonomic systems. The mo-
mentum form is found to be partially Hamiltonian, and a new velocity form is found
that is partially Lagrangian. The results are derived for general particle systems, and
then specialized to rigid-body systems. Except for externally constrained velocities,
all systemmatrices are independent of time, making the results power-conserving, and
suitable for use with bond graphs. A new nonholonomic IC (NIC) bond-graph ele-
ment is defined, and bond graphs for the new results are exhibited using this element.
Keywords: Kane’s equations, bond graph, NIC element, partially Hamiltonian, par-
tially Lagrangian.

1 INTRODUCTION
Bond graphs are a widely used graphical formalism for representing dynamic systems, which may
encompass multiple energy domains, in a uniform fashion, using a small set of ideal elements
[1, 2]. Prior to the appearance of our 2018 paper [3], the most advanced methods for representing
multibody systems in a concise bond-graph form were based on generalized momentum, using the
IC-field bond-graph element, and these were limited to holonomic systems. In [3] we introduced a
bond-graph-compatible momentum method for nonholonomic systems, based on Kane’s equations
[4, 5, 6], but it was limited to scleronomic systems. In this paper we further extend our momentum
method to incorporate systems with external time-varying constraints, and we find that this mo-
mentummethod is partially Hamiltonian (to be defined below). We also introduce a velocity-based
method that is partially Lagrangian (also to be defined below). Finally, we introduce a general-
ization of the IC bond-graph element, the nonholonomic, or NIC bond-graph element, and exhibit
bond graphs for our nonholonomic methods.
Kane’s formulation is used in the development, because it can provide concise, matrix-based de-
scriptions of multibody systems [7]. The methodology here differs from [7] however, in that it
makes no assumptions about the kinematic formulation, other than that a set of partial velocity
vectors describing the system is available. For the greatest generality, we begin with particle sys-
tems, and then specialize the results to systems of rigid bodies.

2 SCOPE, ASSUMPTIONS AND APPROACH
2.1 Degrees of freedom, generalized coordinates, generalized velocities
We consider a simple nonholonomic system [6, 8] in an inertial frame, with all rheonomic con-
straints initially relaxed, making it scleronomic. Therefore assume R generalized coordinates qr

completely determine the positions of all particles in the frame, and S generalized velocities fs

completely determine the coordinate derivatives Pqr ; S is the number of scleronomic degrees of
freedom for the system, and the number of nonholonomic constraints is R � S . The coordinate
derivatives and generalized velocities are related through the matrix equation

Pq D Qf ; (1)
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where q and Pq are length R column matrices of coordinates and coordinate derivatives, f is a length
S column matrix of generalized velocities, and Q is an R � S matrix of rank S , a function only
of the generalized coordinates q. After finding equations of motion for the scleronomic degrees of
freedom f, we will then apply Sc rheonomic constraints, so that the final number of unconstrained
degrees of freedom for the system is S �Sc. Without loss of generality, we assume the rheonomic
constraints are directly known functions of time. Thus when the rheonomic constraints are applied,
we will partition the f matrix as

f D
�

fu
fc
�
, (2)

where fc is a length Sc column matrix of known constrained generalized velocities, and fu is a
length S � Sc column matrix of unconstrained generalized velocities.
Remark. Although the precise technical meaning of holonomicity is that S D R, we shall describe
the system equations of motion as being in holonomic form only when f D Pq. This is the case for
classical dynamics methodologies such as Lagrange’s and Hamilton’s equations. The introduction
of the Q matrix allows the use of so-called nonholonomic velocities as elements of the generalized
velocity vector f, which for multibody systems is a vital convenience in formulating the equations
of motion. Selection of generalized velocities fs to minimize the complexity of the equations of
motion is treated in [9, 10].

2.2 Particle velocities and partial velocities
By assumption, the velocity v of every particle in the system can be expressed as

v D

�
@v

@fT

�
f ; (3)

where @v=@fT is a row matrix of partial derivatives, each of which is a function only of the gen-
eralized coordinates q. These are nonholonomic partial velocities, in Kane’s terminology [6, 11].
The particle notation will be extended to model rigid bodies in Section 4.
For the purpose of formulating correct equations of motion, we require knowledge of these partial
velocity vectors. Any competent method for formulating the system kinematics could be used for
this purpose, e.g. the use of lower-body arrays [7] ; however, we need not account here for the
lower-level details of the kinematic formulation.

3 DEVELOPMENT OF GENERAL PARTICLE-BASED FORMS OF THE EQUATIONS
3.1 Impressed and Constraint Forces
We assume that every particle, having differential mass dm, is subject to a differential force resul-
tant dR, given by

dR D dF C d Fc ; (4)

where dF is the total impressed force, and d Fc is the total constraint force. The constraint force
d Fc is that force, and only that force, required to enforce the motion constraints implied by the
partial velocity vectors defined above. The impressed force dF represents all other forces acting
on the particle, which may be specified by constitutive laws, or may be unspecified functions of
time. All dissipative or friction effects are accounted for in the impressed forces, as well as all
conservative or otherwise unspecified actuation forces not considered to be constraint reactions.
Remark. This is standard analytical dynamics terminology for impressed and constraint forces, as
expounded in e.g. [12]. However Kane’s terminology for dF , as used in [6], is “active force”,
while his preferred terminology for d Fc is “noncontributing force”. In [11], which is a revised
and updated edition of [6], both “noncontributing force” and “constraint force” are used to describe
d Fc .
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Figure 1. Multibond graph of unreduced Kane’s equations

3.2 Kane’s Equations in Unreduced Form
Defining the differential linear momentum of each particle as

dp D vdm ; (5)

we may write Newton’s second law as
d Pp D dR : (6)

Kane’s equations in unreduced form for the particle system are (using Stieltjes integration over the
particle system): Z �

@v

@f

�
� .d Pp � dF / D 0 ; (7)

where 0 is a length S column matrix of zeros; in view of (4) this is equivalent to sayingZ �
@v

@f

�
�
�
d Fc

�
D 0 : (8)

Eq. (8) is a consequence of the principle of virtual power, which is a generalization of the more
well known principle of virtual work, that is applicable to nonholonomic systems [13].
We define the total generalized impressed (or “active”) force matrix e as

e �
Z �

@v

@f

�
� dF ; (9)

so that we have Z �
@v

@f

�
� d Pp D e (10)

as the unreduced form of Kane’s equations for a particle system.
Remark. Practitioners of Kane’s methodology typically write (10) as

eC e�
D 0 ; (11)

where the elements of the e� column matrix are called “generalized inertia forces”, defined as

e�
� �

Z �
@v

@f

�
� d Pp : (12)

Equation (11) is an homage to D’Alembert [4].
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3.3 Bond Graph Representation of the Unreduced Equations
Figure 1 displays a multibond graph [14, 15] of Kane’s equations in unreduced form. Here we have
converted from a Stieltjes integral representation of differential particle masses to a large but finite
sum of N mass particles with inertial velocities vn and masses mn. There are three 1-junctions
(common flow, effort summing) on the bond graph, with associated flow matrices Pq, f; and fvng

from left to right. There are two transformer (TF) elements connecting the three 1-junctions; one
to represent the transformation of the Q matrix, and the other to represent the transformation of
the partial velocity vectors.
The constitutive equations for the multibond TF element with modulus given by the partial velocity
vectors are written below it. They imply perfect power conservation by this TF element (all bond
graph TF elements have this property). Essentially the principle of virtual power represents the
constraint forces in such a way that, in combination with the partial velocity vectors, they form an
ideal machine, represented by the TF element.
The inertial subsystem on the right for the free particles is in so-called derivative causality, as
indicated by the position of the causal stroke on the multibond, and its associated efforts are trans-
ferred across the TF element to the left side of the f 1-junction as e�. Similarly the impressed
forces transfer to the same location as e. Meanwhile there is a zero matrix on the right side of that
1-junction, because there are no effort sources to the left of that 1-junction. The sum of efforts on
the left side of the f 1-junction yields the unreduced form of Kane’s equations as expressed in (11).
This could be considered a bond-graphic derivation of Kane’s equations, because the bond-graph
representation of the system as an ideal machine is evidently equivalent to the principle of virtual
power.

3.4 Reduced Velocity Form and System Matrices
To find the reduced velocity form of Kane’s equations, we return to the representation of the system
as an infinite collection of particles, each having an associated differential mass and momentum.
Using the partial velocity expansion for v from (3), we may write the derivative of the momentum
vector for a particle as

d Pp D
��

@v

@fT

�
dm

�
Pf C

�
d
dt

�
@v

@fT

�
dm

�
f : (13)

Substituting this into the Stieltjes integral in (10), we find

APf C NDf D e ; (14)

where A is the system mass matrix given by

A �
Z �

@v

@f

�
�

�
@v

@fT

�
dm ; (15)
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and ND is the system gyrator matrix given by

ND �
Z �

@v

@f

�
�
d
dt

�
@v

@fT

�
dm I (16)

“gyrator” is standard bond-graph terminology for a matrix ND which maps a column matrix of input
flows f to a column matrix of output efforts NDf.
A is a function only of q, and by differentiation of (15), we find the identity

PA D NDC NDT
: (17)

We will make use of this fact below. Although (16) provides a unique definition for ND, any matrix
D that satisfies (17) and for which Df D NDf will serve for ND in (14). These two properties also
guarantee that DTf D NDTf. Equation (14) (with ND replaced by D) is what we consider the standard
reduced velocity form of Kane’s equations, for scleronomic systems. It is applicable to systems
composed of point masses, rigid bodies, and flexible bodies modeled with a finite number of
degrees of freedom.
Remark. Flexible bodies will not be considered here, but in Sec. 4 we provide the formulas to
compute A and D from rigid body mass properties and velocities. Clearly it is Df rather than D
that is actually required in (14), and in Sec. 3.7 below we also develop an alternative approach to
computing Df as a whole rather than D separately from f . One must be cautious in the interpreta-
tion of the Df term, because due to differentiation of the partial velocity vectors in (16), D is itself
already linear in f, so that the term as a whole is quadratic rather than linear in f.

To develop a bond graph for the reduced velocity form of Kane’s equations, we first consider the
total kinetic co-energy function T �.q; f/ for the particle system, which can be written in terms of
the mass matrix A as

T �.q; f/ � .1=2/fTA.q/f: (18)

The total rate of change of kinetic energy is then given as

dT �

dt
D

@T �

@fT
Pf C @T �

@qT Pq

D fTAPf C .1=2/fT PAf
D fT.APf/C fT.Df/: (19)

This suggests that a system kinetic co-energy store may be represented as having two multibond
ports: one with effort APf, and one with effort Df. A full multibond graph of the reduced form of
the equations, using a two-port kinetic co-energy (T �) store, is shown in Fig. 2, where Eq. (14) is
represented at the f 1-junction to the left of the T � store. The left (I) port of the store, with effort
APf, has flow causality, while the right (C) port of the store, with effort Df, has effort causality.

3.5 Generalized Momentum Form and Generalized Gyration Forces
Now consider the generalized momentum matrix p, which we initially define as

p �
Z �

@v

@f

�
� dp : (20)

Using the definition of the mass matrix in (15), we can also write this as

p D Af : (21)

Regarding p in (21) as a function Op.q; f/, we see that we could compute the mass matrix from the
partial derivative of Op with respect to f:

Op.q; f/ � A.q/f ; (22)
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and therefore A is given by

A D @ Op
@fT : (23)

To find a differential equation for p, differentiate (21) with respect to time, yielding

Pp D APf C PAf : (24)

Using Eq. (17) for PA, and the velocity form (14) to eliminate APf, we find the differential equation
for p as:

Pp D eC DTf : (25)

This we regard as one of a pair of equations of motion. In order to integrate these equations for p,
we have to solve simultaneously for f from p. Using (21), we find the second of the pair as

f D A�1p: (26)

Equations (25) and (26), taken as a pair, we consider to be Kane’s momentum equations of motion
for a scleronomic system.
The transpose of the gyrator matrix D is evidently itself a gyrator matrix, mapping the flow matrix
f to an effort matrix DTf. Again, we should treat this product with care, because it is quadratic
rather than linear in the generalized velocities f. We name the output effort matrix Oe, and call it
generalized gyration force:

Oe � DTf ; (27)

which allows us to write (25) as
Pp D eC Oe : (28)

The product DTf D NDTf has a straightforward per-particle interpretation. Using the definition of
ND from (16), we find

Oe D
Z d

dt

�
@v

@f

�
� dp; (29)

which allows us to define the differential generalized gyration force contributed by each particle as

dOe D d
dt

�
@v

@f

�
� dp: (30)

Note the parallelism between the definitions of p and Oe in (20) and (29), respectively.

3.6 Hamiltonian Properties and Bond Graphs for Momentum Equations
Continuing with the momentum form of the equations, let us first assume the system is holonomic,
so that f D Pq. In this case the derivative of a partial velocity vector can be written as

d
dt

�
@v

@ Pq

�
D

�
@v

@q

�
; (31)

which is the well-known “cancellation of dots” identity. Therefore the generalized gyration force
in (29) reduces to

Oe D
Z �

@v

@q

�
� dp D

Z �
@v

@q

�
� vdm D

@T �

@q ; (32)

where T � is the kinetic co-energy function defined in (18). To get this into Hamiltonian form, we
need to convert the kinetic co-energy function T � to the kinetic energy function T . Using (26)
with f D Pq, we find

T �.q; Pq/ D T .q; p/ � .1=2/pTA�1p : (33)
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Making use of the identity
@A�1

@qr
D �A�1 @A

@qr
A�1;

we find we may write the generalized gyration forces as

Oe D �@T

@q : (34)

By partial differentiation of T with respect to p, we also find
@T

@p D A�1p D Pq ; (35)

so that the holonomic momentum equations may be expressed as the Hamiltonian pair

Pp D e � @T

@q ; Pq D @T

@p : (36)

We regard the holonomic momentum equations as fully Hamiltonian, because the right side of
both equations is generated by partial differentiations of the kinetic energy function T (we are
ignoring the generalized impressed force e here, as is conventional). In this case we say that the
kinetic energy function T is monogenic [16, p. 30].
To develop a bond graph for the holonomic momentum form, we differentiate (33):

dT

dt
D

@T

@pT PpC
@T

@qT Pq

D pTA�1
Pp � .1=2/pTA�1 PAA�1p

D PqT . Pp/ � PqT �DT
Pq
�

; (37)

which again suggests a two-port kinetic energy store, with effort Pp on one port, and effort DT
Pq

on the other. The resulting bond graph of the holonomic momentum form of Kane’s equations in
shown in Fig. 3. In this case, the required kinetic energy (T ) store is identified as the standard
multibond IC element, first used (as a field rather than a multibond element) specifically for this
purpose by Karnopp in [17]. The multibond IC element is defined in such a way that it requires
the monogenic property of T to hold, i.e. the flow on the (left) I-port and the effort on the (right)
C-port are given by the Hamiltonian differentiation operations on T defined above, and shown in
the figure.
Now for the nonholonomic case, we can still differentiate T with respect to p, and get the valid
equation f D @T=@p D A�1p. However, Oe is no longer generated by @T=@q, so that the right side
of only one of the pair is generated by T :

Pp D eC Oe; f D @T

@p : (38)
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Figure 4. Multibond graph of reduced Kane’s equations, nonholonomic momentum form

Thus, in the nonholonomic case, the kinetic energy function T is not monogenic, because it doesn’t
generate the right sides of both equations in the pair. We may however regard the nonholonomic
momentum equations as being partially Hamiltonian, because the kinetic energy function generates
one of the pair. A bond graph for this case is shown in Fig. 4; in this case we show the required
T store as a newly defined bond-graph element, the nonholonomic IC, or NIC element. This
energy store has the partially Hamiltonian property defined above, which generates the flow f on
the left (I) port from @T=@p, but requires the DTmatrix to generate the effort Oe on the right (C) port.
Importantly, when the system being described is actually holonomic, the NIC element reduces to
the standard IC element defined above.

3.7 Lagrangian Form and Bond Graphs for Velocity Equations
An alternative form of the velocity equations in Sec. 3.4 can be developed from the momentum
form developed in Secs. 3.5–3.6, which is partially Lagrangian in the nonholonomic case, and
fully Lagrangian in the holonomic case. Starting from the generalized momentum function Op.q; f/
defined above in Eq. (22), we take the total derivative of Op.q; f/ symbolically, finding

POp D
�

@ Op
@fT

�
Pf C

�
@ Op
@qT

�
Pq : (39)

Then using the definition of Op in (22), we see that @ Op=@fTis equal to A, so we have

POp D APf C
�

@ Op
@qT

�
Pq: (40)

Substituting this into the momentum equation of motion (28), we have

APf C
�

@ Op
@qT

�
Pq D eC Oe: (41)

This form of the nonholonomic velocity equations is believed to be a new result, which is useful
in several ways. We call it the partially Lagrangian form of the velocity equations.
First, it has a partially Lagrangian property, as we shall explain. The left side of (41) is generated by
the left side of (40), which in turn is generated by differentiation of the kinetic co-energy function,
i.e.

POp D d
dt

�
@T �

@f

�
;

where T � is the nonholonomic kinetic co-energy function defined in (18). Therefore we can write
(41) in the form

d
dt

�
@T �

@f

�
D eC Oe : (42)
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Figure 6. Multibond graph of reduced Kane’s equations, holonomic Lagrangian form

Figure 5 displays a multibond graph of the partially Lagrangian form of the velocity equations,
using the NIC multibond-graph element defined in Sec. 3.6. As in the momentum case, the
energy function T � associated with the NIC element generates the column matrix of efforts on the
left (I) side of the element (POp), but not the column matrix of efforts Oe on the right (C) side of the
element.
If the system were fully holonomic, the left side of Eq. (42) would be d .@T �=@ Pq/ =dt , while, using
(32), the right side would be e C @T �=@q. Clearly, these are are Lagrange’s equations. Therefore
Eq. (42) demonstrates a partially Lagrangian property, which becomes completely Lagrangian in
case that the system is holonomic. From another point of view, in the holonomic case, the kinetic
co-energy function T � is seen to be monogenic, in that it generates both sides of the equation
(setting e aside), while in the nonholonomic case, it generates only one side of the equation. Thus,
as in the momentum equations, the associated energy function is or is not monogenic according as
the system is or is not holonomic. Figure 6 displays a multibond graph of the velocity equations in
the fully Lagrangian form, using again the standard multibond-graph IC element.
Besides having the partially Lagrangian property, Eq. (41) provides a useful alternative imple-
mentation for the computing the product Df. Comparing (41) to (14), we find

Df D @ Op
@qT Pq � Oe : (43)

The expression on the right side of (43) may be simpler to compute by analysis than the one on the
left side, particularly if one or more of the coordinates q does not appear in the expression for Op. A
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generalized coordinate qr is defined as ignorable if it does not appear explicitly in the momentum
function Op (or equivalently the mass matrix A). If all generalized coordinates are ignorable, then

Df D �Oe D �DTf:
(all coordinates ignorable) (44)

This could also be derived directly from Eq. 17.

3.8 Extension to Rheonomic Systems, Including Generalized Constraint Forces.
Now, in the final stage of our analysis, we complete the method of constraint relaxation, by enforc-
ing the previously relaxed Sc rheonomic flow constraints, thereby removing the limitation of the
analysis to scleronomic systems, and allowing the determination of the reactions associated with
the rheonomic constraints. Therefore in addition to partitioning the flow matrix f according to (2),
we must partition the effort matrix e as

e D
�

eu
ec
�

; (45)

where eu is the column vector of impressed efforts corresponding to fu , and ec is the column
matrix of constraint reactions to be found, corresponding to the directly known flow constraints
fc .
Equation (14), the reduced velocity form of the equations of motion, when partitioned according
to this scheme, becomes�

eu
ec
�
D

�
Auu Auc

Acu Acc

�"
Pfu
Pfc
#
C

�
Du
Dc
�

f ; (46)

where we are partitioning A according to its rows and columns, but we are partitioning D only
according to its rows. The first row of (46) gives a solution for Pfu as

Pfu D
�

Auu ��1
h

eu � Auc Pfc � Du f
i

; (47)

while the second row directly gives the solution for the constraint reactions as

ec D Acu Pfu C Acc Pfc C Dc f I (48)

in order to implement these computationally (47) must be evaluated before (48).
To work with the reduced momentum form of the equations of motion, we may proceed similarly.
The first row of the partitioned form of (25) gives an equation for Ppu , as

Ppu D eu C
�
DT�u f ; (49)

while the first row of the partitioned form of (21) yields the solution for fu as

fu D
�

Auu ��1 � pu � Auc fc
�

: (50)

The momentum formulation for the unconstrained flows, (49, 50), shows a clear computational
advantage over the velocity formulation (47, 48) in that the known constrained flows do not have
to be differentiated to find fu in the momentum formulation, whereas they do in the velocity
formulation. However, it is not possible to avoid differentiating the constrained flows in order to
find the constraint reactions ec . Although a momentum formulation for the constraint reactions
can be developed [18], it offers no computational advantages over the velocity formulation, and
therefore the velocity formulation for the constraint reactions, (48), is recommended for use in all
cases.
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4 RIGID-BODY FORMS OF THE SYSTEM MATRICES
We consider now a system of N rigid bodies indexed by n, with body n having angular velocity
!n in the inertial frame, and its center of mass having linear velocity vn in the same frame. Body
n will have total mass mn, and rotational inertia tensor In. The velocity vectors for each body can
be written as

!n D

�
@!n

@fT

�
f; vn D

�
@vn

@fT

�
f: (51)

Euler defined the linear and angular momentum vectors as

pn D mnvn; hn D In �!n; (52)

respectively. We assume that the total impressed force acting through the center of mass is Fn,
and the total impressed moment acting about the center of mass is Mn.
By Stieltjes integration of the particle contributions over each body, we may show the following
system relationships, which are listed without proof (using the summation convention over n):

e D
�

@vn

@f

�
� Fn C

�
@!n

@f

�
�Mn (53)

p D Op .q; f/ D
�

@vn

@f

�
� pn C

�
@!n

@f

�
� hn (54)

A D @ Op
@fT D mn

�
@vn

@f

�
�

�
@vn

@fT

�
C

�
@!n

@f

�
� In �

�
@!n

@fT

�
(55)

D D mn

�
@vn

@f

�
�
d
dt

�
@vn

@fT

�
C

�
@!n

@f

�
� In �

d
dt

�
@!n

@fT

�
C

�
@!n

@f

�
�

�
!n �

@hn

@fT

�
(56)

Oe D DTf D d
dt

�
@vn

@f

�
� pn C

d
dt

�
@!n

@f

�
� hn : (57)

All the reduced form equations derived above for particle systems apply equally well for rigid-body
systems, when these results for the system matrices are used in the equations.
For holonomic systems, we can use the previously mentioned “cancellation of dots” identity for
the linear velocity vectors, as well as an additional identity for the angular velocity vectors, which
is

d
dt

�
@!n

@ Pq

�
D

�
@!n

@q

�
C!n �

�
@!n

@ Pq

�
: (58)

Under these circumstances, we have the following simplifications:

D D mn

�
@vn

@ Pq

�
�

�
@vn

@qT

�
C

�
@!n

@ Pq

�
� In �

�
@!n

@qT

�
; (59)

Oe D DT
Pq D

�
@vn

@q

�
� pn C

�
@!n

@q

�
� hn : (60)

4.1 Relationship to Previous Results
In the authors’ previously published paper [3], which covers only the scleronomic momentum form
for rigid-body systems, we define the C matrix as

C D mn
d
dt

�
@vn

@f

�
�

�
@vn

@fT

�
C

d
dt

�
@!n

@f

�
� In �

�
@!n

@fT

�
; (61)

from which it is clear that D and C are related according to

D D CT
C

�
@!n

@f

�
�

�
!n �

@hn

@fT

�
: (62)

The A and C matrices are sufficient to define the momentum forms, without requiring the D matrix.
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ABSTRACT

When performing the numerical integration of multibody systems (MBS) dynamics,
the analyst can choose from a wide variety of methods and implementations. Select-
ing the most appropriate option for a particular application is not a straightforward
task; as a consequence, several benchmark examples have been formulated by the
MBS research community with the intent to assess the accuracy and performance of
different solution methods when applied to certain kinds of mechanical problems.
This paper introduces a variation of the slider-crank mechanism, already employed
as benchmark problem in the MBS literature, intended to evaluate the performance
of variable-step MBS algorithms. Three cases, featuring singular configurations and
variable-frequency external actions, were defined. The example is used to illustrate
some necessary elements in the definition of a benchmark problem and in the process
of comparing different solution methods, as well as difficulties that can arise during
this task. The proposed example was used to evaluate the behaviour of a variable-step
index-3 augmented Lagrangian algorithm with velocity and acceleration projections,
as well as other well-known solution methods.

Keywords: Benchmark problems, Numerical integration, Efficient Methods, Singular
configurations.

1 INTRODUCTION
A considerable number of methods and algorithms for the simulation and analysis of Multibody
System (MBS) Dynamics have been proposed since the early developments in this area were first
published [1, 2]. The performance of each approach depends on the characteristics of the prob-
lems to which it is applied, and so methods that are effective in the simulation of a certain type
of mechanical system may be inefficient when applied to mechanisms with a different topology or
subjected to other kinds of physical phenomena. Fully recursive methods [3], for instance, may
become ineffective in the solution of heavily constrained multibody systems; mechanisms that fea-
ture redundant constraints or singular configurations pose a problem for solution algorithms that
expect the Jacobian matrix of the constraints to have a full row rank throughout the motion [4, 5].
Moreover, implementation techniques, third-party software libraries, e.g., for the linear algebra
routines required by most MBS codes, and the hardware platform used to execute the code, as
well as the interaction between them, have a critical impact on the time elapsed in computations
[6, 7]. For these reasons, selecting an appropriate MBS formalism for its application to a partic-
ular problem may prove challenging in some cases, particularly when efficiency constraints are
imposed as a requirement.

Benchmark problems represent a useful tool to evaluate the accuracy and efficiency of MBS codes,
as well as their ability to handle particular kinds of problems. Ideally, benchmarks should be sim-
ple enough to enable their exact reproduction by any researcher or team interested in using them.
At the same time, they must be nontrivial problems that provide interesting information about some
aspect of the behaviour of the solution method [8]. In recent years, several initiatives have been put
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forward by MBS researchers to propose meaningful test problems that can be generally accepted
as benchmarks by the community. The IFToMM Library of Computational Benchmark Problems
[9] is a well-known collection of such examples, which includes test problems for forward- and
inverse-dynamics, as well as linearization. These examples illustrate the performance of MBS for-
mulations and implementations when dealing with complex issues such as redundant constraints,
singular configurations, stiff problems, and contacts, to mention just a few. Another instance of
collection of benchmark problems can be found in [10], which puts forward a series of cases for
the validation of flexible multibody dynamics algorithms. Benchmark problems for contact dy-
namics were introduced in [11]. In the case of MBS dynamics, benchmarking is not limited to
the algorithms for the integration of the equations of motion, but has also been extended to appli-
cations in which the multibody part is a necessary component, like estimators based on Kalman
filters [12]. Benchmark problems for particular applications of MBS dynamics can be found in the
areas of railway vehicles [13] and co-simulation [14].

Variable step-size integration methods are frequently used in MBS dynamics applications. These
algorithms adapt the step-size of the integration formula to the time-scale of the dynamics of the
problem under study with the goal of reducing the time elapsed in computations. In some cases,
the step-size control solution is combined with the MBS formulation used to handle the equations
of motion, e.g., [15]. This paper introduces a variation of the well-known slider-crank benchmark
problem particularly geared towards the assessment of variable step-size integration methods. Two
new versions of the linkage were defined, with and without singular configurations. Both were
subjected to the action of a force that varied over time, to prevent a periodic system motion.

A particular goal of the present paper is to assess the ability of the variable-step index-3 aug-
mented Lagrangian algorithm with velocity and acceleration projections, introduced in [15], to
take advantage of step-size adjustment during motion to deliver more accurate and efficient sim-
ulation results. Other formulations and integration formulas were used as well to evaluate the
ability of the proposed example to be used in the assessment of variable-step integrators. Results
showed that the combination of singular configurations and externally applied forces with variable
frequency made the proposed example a challenging problem for most solution methods.

2 METHODS
There exist three components that should always be present in the definition of a benchmark prob-
lem for MBS dynamics algorithms:

• A definition of the problem to be solved. This must include the specification of the properties
and initial state of the mechanical system, as well as information about the manoeuvre to be
simulated, such as duration in time and input forces and torques.

• A reference solution which, for the purposes of benchmarking, can be considered correct.
This reference solution may be obtained from experimental results, an analytical solution of
the problem at hand, or upon convergence of several simulation processes.

• Appropriate error metrics and comparison criteria. These enable the assessment of the solu-
tions obtained with different simulation methods [16].

Moreover, other optional components can be added too, such as reference implementations of the
simulation code or data structures to enable the efficient collection and processing of simulation
results.

In order to be useful, benchmark examples should be clearly defined problems that are easy to
replicate. They should also represent nontrivial scenarios, which are meaningful or challenging
in at least one respect. Ideally, they should also be representative of a wider class of systems.
For instance, a slider-crank that undergoes singular configurations can be defined in a straightfor-
ward way with a reduced set of kinematic and kinetic parameters. In spite of being a relatively
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simple mechanical system, it poses a problem for simulation algorithms that cannot deal with rank-
deficient Jacobian matrices; even some solution methods that can handle them need to be carefully
adjusted to deliver correct results [5], as is the case of augmented Lagrangian algorithms. Results
obtained with this linkage can then be used to assess the general ability of solution methods to
carry out the simulation of systems with singularities.

In some cases, it is possible to find an analytical solution for the motion of simple mechanical
systems. Generally, this is not the case. In benchmark problems that do not represent a physi-
cal system, for which experimental results are not available, physical magnitudes can be used as
indicators instead. For instance, the variation of the mechanical energy can be used to quantify
the accuracy of a given simulation method if the benchmark problem represents a conservative
system. These indicators should be used with precaution, as a precise energy conservation does
not necessarily guarantee the correctness of the obtained results. Arriving at a reference solution
through the convergence of several simulation methods is advisable when analytical and experi-
mental solutions are not available.

Error metrics and criteria are also an important component of a benchmark problem. First, it
is necessary to select the variables that will be selected to evaluate the accuracy of a solution.
These may include kinematic variables, such as positions, velocities, and accelerations, or kinetic
magnitudes like forces or energies. Usually n variables of interest can be selected and will suffice
to measure the precision of the results. It is also necessary to specify at what points in time these
variables will be evaluated. When using fixed-step integrators this is relatively simple, as data can
be gathered regularly during the simulation. With variable-step simulators usually interpolation
methods have to be used. Second, a metric to quantify the deviation of the results obtained with a
particular method with respect to the reference solution is necessary. The local error at time point
ti for variable y j can be evaluated as

ε j (ti) = y j (ti)− yref
j (ti) (1)

where yref
j denotes the value that corresponds to the reference solution. Relative definitions of the

error can be used too [16]. Absolute errors, however, show a better behaviour when the variables
of interest approach zero. The total error of a simulation can be calculated as

εT =

√
1
n

n

∑
j=1

w j

m

m

∑
i=1

(ε j (ti))
2 (2)

where m is the total number of time points collected during the simulation and w j is a weight factor
that represents the contribution of variable j to the total error. Factor w j can also be used to make
errors dimensionless, so that variables with different units can be added together in a single error
indicator. Besides the total error in (2), it is also possible to select other indicators, such as the
maximum or minimum absolute error for a single variable or group of variables.

The existence of a metric like the one in (2) makes it possible to establish a validity criterion that
determines whether a simulation is accurate enough or not. A criterion like this is particularly
important if the benchmark problem is to be used to compare several solution approaches in terms
of efficiency, because that comparison should be carried out requesting the same accuracy level
from every method.

Finally, comparison criteria can be defined to quantify the differences between the different solu-
tion methods. The elapsed time in computations is a commonly used criterion to rank algorithms
and implementations, but other metrics, such as energy balances and satisfaction of kinematic
constraints can be used too [17].

2.1 Problem description
The benchmark problem used in this paper is a variation of the well-known slider-crank linkage,
already included in the IFToMM benchmark library [9] and shown in Fig. 1. This planar mechan-
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ical system is composed of two rods, links 1 and 2, with uniformly distributed mass m1 and m2
and length L1 and L2, respectively. The slider, link 3, has mass m3 and moves without friction
along the x axis. The mechanism moves under gravity effects with g = 9.81 m/s2 acting along the
negative y axis. The system has one degree of freedom; at time t = 0, rod 1 is at an angle θ1,0 with
respect to the x axis and the velocity of point Q is ẋQ,0. A horizontal external force f acts on point
Q during motion.

O

P

Q

x

y

θ1 f

g

1 2

3

Figure 1. Slider-crank mechanism used as benchmark problem.

Three simulation cases are considered as shown in Table 1, which details the values of the physical
parameters of the system, its initial state, and the externally applied actions.

Table 1. Simulation cases

Case L1 L2 m1 m2 m3 IG,1 IG,2 θ1,0 ẋQ,0 f

(m) (m) (kg) (kg) (kg) (kgm2) (kgm2) (rad) (m/s) (N)

1 1 1 1 1 0 1/12 1/12 π/4 -4 0

2 3 6 1.5 3 0.25 9/8 9 0 0 100sin(πt)

3 1 1 1 1 0 1/12 1/12 π/4 0 100sin(πt)

Case 1 corresponds to the slider-crank benchmark problem in [9]. In this case, rods 1 and 2 have
the same length (L1 = L2) and this causes the linkage to pass through a singular configuration when
θ1 = ±π/2, i.e., when both rods are aligned on the y axis. From here the linkage can continue
its motion either as a slider-crank mechanism or as a pendulum with point Q motionless at the
location of point O. The slider is massless and the externally applied force f in this case is zero
during motion.

In case 2, rods 1 and 2 have different lengths and so the linkage motion is not affected by singular
configurations. The externally applied force follows now a sinusoidal expression whose frequency
increases with time, f = 100sin(πt). The introduction of this force gives rise to numerical dif-
ficulties in the solution of the problem. The system ceases to be conservative and its motion is
no longer periodic. Moreover, the extreme positions of the motion, reached when both rods are
aligned on the x axis and, thus, with the external force f , become challenging from the point of
view of numerical simulation. There, depending on the value of the force f and the accuracy of
the integration process, the motion can continue following one of two possible branches, namely
those that correspond to θ̇1 > 0 and to θ̇1 < 0.

Case 3 uses the same physical parameters as case 1, but the externally applied force f now fol-
lows the sinusoidal expression from case 2. The resulting problem is subjected to both singular
configurations and numerical difficulties at the extreme points of the motion.
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2.1.1 Variables of interest and metrics
The mechanical system under study has one degree of freedom and a single variable should be
enough to keep track of its motion. However, in cases 1 and 3 singular configurations exist and
these give rise to the existence of two branches of motion. For this reason, two variables will be
monitored and used to evaluate the error in Eq. (2): angle θ1 between link 1 and the x axis, and the
x coordinate of point Q on the slider.

The sampling interval for error evaluation was set to 10 ms; a total simulation length of 10 s
was used in cases 1 and 2, whereas this duration was reduced to 5 s for case 3. The total errors
associated with variables θ1 and xQ were aggregated into a single error indicator using Eq. (2)
using weights wθ = 1 rad−2 and wxQ = 1 m−2, intended to make the final metric dimensionless.
Case 1 is a conservative system, and so the total mechanical energy was used there as additional
metric.

When using variable step-size integrators, the variables of interest are usually not evaluated exactly
at the sampling points. This also happens when constant integration steps are used, but they are
not exact dividers of the sampling interval. In these cases, data need to be interpolated; a linear
polynomial interpolation has been used here to determine the necessary values.

Two levels of accuracy have been established for the defined cases. In case 1, a high-precision sim-
ulation corresponds to a maximum admissible total error εT = 2 ·10−4. This is roughly equivalent
to the energy criterion set in the IFToMM benchmark, which accepted simulations with maximum
energy errors below 0.001 J. The admissibility threshold for low-precision simulation in this case
was increased up to εT = 2 ·10−3. However, different precision requirements can be specified for
the three cases; the selected thresholds are shown in Table 2.

Table 2. Maximum admissible errors for each simulation case

Case High-precision εT Low-precision εT

1 2 ·10−4 2 ·10−3

2 5 ·10−3 5 ·10−2

3 1 ·10−2 1 ·10−1

The selection of the threshold depends on factors like the time scale of the dynamics and the
difficulty of the problem.

2.2 Solution methods
Several solution methods were used to carry out the forward-dynamics simulation of the bench-
mark example. Their main characteristics are summarized on Table 3. Unless otherwise specified,
MATLAB implementations were used to perform the simulation.

The first method (AL) uses the index-1 augmented Lagrangian algorithm with position and veloc-
ity projections presented in [18], integrated with the trapezoidal rule (TR) in fixed-point iteration
form. Method ALi3p stands for the index-3 augmented Lagrangian algorithm with projections of
velocities and accelerations [19, 20]. Algorithm ALi3pvs is the variable-step version of ALi3p
introduced in [15]. These three methods described the benchmark problem using a set of 18 nat-
ural coordinates [1] subjected to 18 redundant kinematic constraints. Besides, methods mAL and
mNS were also assessed, in which MATLAB ode45 integration formula is used. The first one uses
a stabilized augmented Lagrangian algorithm, while the second adopts a null-space formulation
similar to the one in [21]. These methods described the system with Cartesian variables, namely
the x and y coordinates of the centre of mass of each body, and impose on them 11 independent
constraint equations. In cases 1 and 3, the Jacobian matrix of these constraints loses rank and, as
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Table 3. Summary of the methods employed to solve the slider-crank benchmark problem

Method Coordinates Constraints Integrator Step-size

AL 18 natural, 3D 18 redundant TR fixed

ALi3p 18 natural, 3D 18 redundant TR fixed

ALi3pvs 18 natural, 3D 18 redundant TR variable

mAL 12 Cartesian, 2D 11 independent ode45 variable

mNS 12 Cartesian, 2D 11 independent ode45 variable

mAL-ode4 12 Cartesian, 2D 11 independent ode4 fixed

mNS-ode4 12 Cartesian, 2D 11 independent ode4 fixed

expected, the mNS method was unable to successfully complete the simulation. For the purpose of
comparing fixed- and variable-step integrators, methods mAL and mNS were also combined with
a fourth order, fixed-step Runge-Kutta integration formula, denoted in the text as ode4.

2.3 Reference solution
Reference solutions for each case were obtained by convergence of the different methods sum-
marized in Section 2.2. An additional simulation with a Simscape model of the mechanism was
also included in this process, intended to confirm the results obtained by the authors by means
of third-party software. Figures 2 and 3 show the slider displacement xQ that correspond to the
reference solutions of cases 1 and 2. Upon convergence, the differences in the monitored variables
across the solutions delivered by the methods remained below 2.5 ·10−4 m for xQ and 2 ·10−4 rad
for θ1 at every sampling point. For case 1, the error in mechanical energy of the reference solution
was lower than 2 ·10−6 J.
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Figure 2. Reference solution: displacement xQ of the slider in case 1.

Obtaining a reference solution in case 3 became more complicated. Figure 4 displays the slider
displacement delivered by different solution methods in this case; these results show that it was
not possible to achieve convergence during the last seconds of the motion, even with very stringent
simulation conditions. The system dynamics becomes chaotic due to the combination of singular
configurations and the applied force f . Under these circumstances, using a 10 s-simulation as
benchmark would not convey interesting information regarding the capability of the methods to
deliver accurate solutions. For these reasons, the total duration of this numerical experiment was

https://doi.org/10.3311/ECCOMASMBD2021-172

229



0 1 2 3 4 5 6 7 8 9 10
2
3
4
5
6
7
8
9

10

Time (s)

x Q
[m

]

xQ

Figure 3. Reference solution: displacement xQ of the slider in case 2.

shortened to 5 s. Even with this reduced duration, it was not possible to decrease the maximum
differences between solutions at convergence below 7 ·10−3 m for xQ and 10−2 rad for θ1.
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Figure 4. Displacement xQ of the slider in case 3 obtained with different solution methods.

3 RESULTS
The benchmark scenarios defined in Section 2 were used to evaluate and compare the performance
of the simulation solutions in Table 3. The computations were performed on an Intel Core i7-
7700HQ at 2.80 GHz with 16 GB of RAM, running Windows 64-bit and Matlab R2020b.

In the case of the constant-step AL and ALi3p formulations, the integration step-size h was found
to be the parameter that had the greatest impact on the efficiency and accuracy of the simulation.
Both were able to deal with singular configurations in cases 1 and 3. For the low precision case,
both methods delivered comparable results in terms of efficiency. For high precision, the ALi3p
method was clearly superior; in case 2 the AL solver was unable to meet the required error thresh-
old. It must be noted that the formulation parameters were the same in all simulation cases, with
the notable exception that case 3 required the use of a higher penalty factor in the ALi3p solution
(α = 1015 instead of α = 1012 used in the other two cases). The results delivered by ALi3p were
used next for comparison with those delivered by its variable-step counterpart. A summary of the
results of the most efficient simulations for high and low precision levels is shown in Table 4. The
elapsed time corresponds to the average of three runs of each scenario.

For the variable-step ALi3pVS method, attaining the levels of accuracy specified in Table 2 de-
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Table 4. Best results obtained with the ALi3p solver

High precision Low precision

εT Elapsed (s) h (ms) εT Elapsed (s) h (ms)

Case 1 1.6 ·10−4 11.07 1.5 1.9 ·10−3 4.82 3.5

Case 2 3.6 ·10−3 17.83 0.75 4.8 ·10−2 5.31 3

Case 3 5.4 ·10−3 24.83 0.25 8.7 ·10−2 3.95 2.25

pended on a number of factors. The user must specify the upper and lower limits within which the
integration step h has to remain, hmax and hmin. Besides these, the criteria used to stop the Newton-
Raphson iteration, namely the number of iterations γ and the norm of the maximum admissible
increment of the variables upon convergence, ϕmax, were found to be the most relevant. Tuning
these parameters was not a straightforward process, because the impact of a given selection on the
simulation performance is highly nonlinear. Moreover, because the algorithm adjusts the step-size
based on its previously used value, the initially used step-size h0 must also be considered a param-
eter of the simulation. In the reported simulations, these parameters were varied in the following
ranges: hmax ∈ [0.5,10] ms, hmin ∈ [0.05,1] ms, γ ∈ [1,10], ϕmax ∈ [10−5,10−15]. Table 5 shows the
parameter combinations that delivered the most efficient simulation for the high-precision require-
ment in every case. In case 3 it was not possible to achieve an improvement over the constant-step
ALi3p method.

Table 5. Best results obtained with the ALi3pvs solver, high precision

εT Elapsed (s) hmax (ms) hmin (ms) h0 (ms) γ ϕmax

Case 1 9.1 ·10−5 9.2 10 0.05 0.5 10 10−7

Case 2 2.8 ·10−3 17.7 5 0.05 1 2 10−11

Case 3 Same as ALi3p - - - - -

Table 6 shows the results delivered by the step-size adjustment method for the low-precision case.

Table 6. Best results obtained with the ALi3pvs solver, low precision

εT Elapsed (s) hmax (ms) hmin (ms) h0 (ms) γ ϕmax

Case 1 1.7 ·10−3 3.3 3.5 0.05 2 2 10−6

Case 2 1.1 ·10−2 3.7 10 0.05 1 2 10−7

Case 3 9.9 ·10−2 3.68 2 0.05 1 2 5 ·10−8

It is difficult to provide general recommendations on the selection of the ALi3pvs parameters. For
low-precision simulations, it seems advisable to decrease the limit of admissible iterations per step
γ and regulate the error of the simulation by tuning the convergence criterion ϕmax.

The mAL and mNS solvers completed the simulation of the example in shorter times than the AL,
ALi3p, and ALi3pvs methods. This is explained by the different modelling used, which led to
a smaller problem size, and also by the fact that the code was specifically implemented to deal
with this example, while the former methods employed a library that took care of the automatic
generation of the equations of motion. The purpose of this Section, however, is not comparing
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the different methods, but verifying the effect of using variable-step integration to perform the
simulation.

As mentioned, the mNS solver was unable to deal with the singular configurations in cases 1 and
3. In case 2, nonetheless, it delivered the most efficient solution. The results obtained in this
case with mNS were compared to a fixed-step counterpart of the method that used a fourth order
Runge-Kutta formula with a constant step-size (ode4). This comparison is shown in Fig. 5; data
from mAL are included as well. These results show that variable-step solvers were able to increase
the precision of the computations while keeping the required computational load lower than their
fixed-step counterparts.
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Figure 5. Elapsed time in the solution of case 2 as a function of the precision εT delivered by
each method.
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Figure 6. Elapsed time in the solution of case 3 as a function of the precision εT delivered by
method mAL.

The results in case 1 for methods mAL and mAL-ode4 followed similar trends to those shown in
Fig. 5: when higher precision was required, variable-step integration showed a comparative ad-
vantage with respect to the fixed-step method. In case 3 the mAL-ode4 integration only managed
to converge to the reference solution with step-sizes below 1.5 ms; moreover, decreasing the inte-
gration step-size did not improve the accuracy of the results. In this case, the variable-step method
delivered better results for all precision levels; these are summarized in Fig. 6.
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4 CONCLUSIONS
In this work, a benchmark example for the evaluation of variable-step multibody dynamics for-
mulations has been introduced. The selected example consists in three variations of a planar
slider-crank linkage, with different physical parameters and applied external forces with variable
frequency. The combination of these forces with the existence of singular configurations in the
mechanism resulted in a challenging problem for variable-step integration methods. A common
approach used by these methods is the reduction of the step-size when it is necessary to deal with
fast dynamics; this poses a problem if the mechanism is moving near a singular configuration,
because the step-size reduction often leads to numerical problems in these positions.

The slider-crank linkage example also served to highlight relevant aspects of the definition of
benchmark problems, such as the availability of a reference solution and the necessity of suitable
metrics to compare the performance of different solution methods.

The three proposed cases of this benchmark problem were used to assess the ability of variable-
step integration methods for multibody system dynamics to improve the efficiency delivered by
their fixed-step counterparts. Results showed that the performance of each approach depends on
the precision requirements and the characteristics of the problem being solved and confirmed the
usefulness of the proposed example for benchmarking applications.
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ABSTRACT
We investigate the effect of the choice of a set of generalized coordinates (GCs) on
the simulation of the behavior of the dynamical system using the single-link spherical
pendulum as an example. Specifically, we focus our attention on numerical errors and
the simulation time necessary to simulate system dynamics. The Lagrangian method
is applied to obtain the equations of motion. The generalized Euler angles are used
as GCs. The GCs depend on the direction of the axes along which they are defined.
Therefore, by parameterizing the directions of these two axes, different sets of GCs
with the corresponding system of nonlinear differential equations are obtained. For
a spherical pendulum, we demonstrate that the optimal sets of GCs leading to the
minimum simulation time are orthogonal sets. However, contrary to our expectations,
orthogonal sets do not result in the minimum simulation error. Additionally, the
intrinsic generalized Euler angles lead to faster simulations than the extrinsic ones.
Therefore, different choices of GCs are not equivalent from a numerical point of view
and further research is needed to develop a strategy for selecting an optimal set of
GCs.
Keywords: Generalized Coordinates, Davenport Angles, Lagrangian Dynamics, Op-
timal Generalized Coordinates, Multibody Systems Dynamics.

1 INTRODUCTION
Dynamic equations describing the evolution of systems can be derived using the Newton-Euler,
Lagrangian, Hamiltonian method, or other formalisms [1]. The Newton-Euler formalism employs
Cartesian coordinates for the position vector. In contrast, Lagrangian and Hamiltonian mechanics
utilize generalized coordinates (GCs), which can be any set of variables suitable to fully describe
the configuration of a system, e.g., Cartesian coordinates, relative and absolute angles, linear and
angular momentum, and energy [2]. The number of variables is often chosen to be equal to
the number of degrees of freedom (DOF) of the system, but it may also contain more variables
than necessary. From a theoretical point of view, all possible sets of GCs are equally valid for
describing system dynamics [3]. However, from a numerical or computational point of view,
there can be differences. For simple systems with a few DOF, it is expected that there will be no
discernible computational differences with regard to the choice of a set of GCs and efficiency is
not an issue. However, for complex multi-body systems with a large number of DOF, the efficiency
and computational time required to perform the analysis can vary greatly depending on the selected
set of GCs.
A methodology of switching between different sets of GCs for multi-DOF planar mechanical
systems was considered in [4]. The authors were primarily concerned with the development of a
mathematical description for deriving control equations in a direct and transparent manner. Using
Cartesian coordinates and the full row rank property of the constraint Jacobian matrix formed
by independent constraints, Wehage and Haug [5] proposed a numerical criterion to obtain the
minimum set of GCs. The method was extended for nonholonomic systems in [6]. Later work
in this direction can be found in [7, 8]. Efficient formulation of dynamic equations was the topic
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in [9–12]. Still, these works did not compare the effect of different sets of GCs on the solution of
dynamic equations. In addition, there is a gap in the literature regarding the choice of optimal sets
of GCs that lead to the numerical solution of differential equations with minimal error within the
shortest simulation time. To the best of the authors’ knowledge, there are no qualitative rules for
selecting the optimal set of GCs [13]. As a result, there is a need in modern engineering for deeper
investigations of the choice of GCs for describing the system dynamics.
In this work, our main motivation is to contribute to the investigation of the influence of a choice
of GCs on the numerical solution of dynamic equations. The main objective of this paper is to
understand the dependence of simulation error and time on the selected set of GCs. Another
objective is to find the optimal set of GCs for a single-link spherical pendulum, which is considered
as a test system. It is widely accepted that the problem-solving-experience is necessary to select
the optimal set of GCs [13] and the search for a procedure which helps to identify the optimal set
of GCs for a given system still continues.
The main novelty of this paper is the analysis of the dependence of the overall simulation error and
computation time on the selected set of GCs based on the parameterized Davenport angles [14].
The main contributions of our work are to show that there are optimal sets of GCs for the spherical
pendulum, and that choice of a GCs set has an impact on the simulations. Our principal results are
the following. First, the choice of GCs strongly affects the simulation time and accuracy. Second,
the optimal sets of GCs that minimize the simulation time do not coincide with those that minimize
the gross simulation error. Third, the intrinsic Davenport angles appear to be more optimal for the
spherical pendulum than extrinsic ones.
The paper is organized as follows. Sect. 2 gives a brief description of dynamic equations of
motion. The kinematics of the spherical pendulum used as a test bed system is discussed in Sect. 3,
where four types of sets of GCs are considered. Sect. 4 describes the simulations settings, and the
simulations results are presented in Sect. 5. Finally, Sect. 6 presents the conclusions.

2 DYNAMIC EQUATIONS OF MOTION
In this paper, we develop dynamic equations of motion using the Lagrangian formalism. Let us
define a set of GCs as q ∈ R𝑛, where 𝑛 is the number of DOF of a mechanical system under
consideration, and q = [𝑞1, 𝑞2, . . . , 𝑞𝑛]𝑇 is a column vector. Here, the transpose operator is
denoted as [·]𝑇 . The corresponding set of generalized velocities (GVs) ¤q ∈ R𝑛 is defined as
the time derivative of the GCs, i.e., ¤q = [ ¤𝑞1, ¤𝑞2, . . . , ¤𝑞𝑛]𝑇 , where the overdot denotes the time
differentiation operator. Equations of motion of a mechanical system can often be written in the
form

𝑀 (q) ¥q+C(q, ¤q) +G(q) = Q (1)

where 𝑀 (q) ∈ R𝑛×𝑛 is the symmetric inertia matrix, C(q, ¤q) ∈ R𝑛 is the vector of Coriolis and
normal inertial forces, and the vector G(q) ∈ R𝑛 describes the effect of gravity. The vector of
generalized forces is Q = [𝑄1, 𝑄2, . . . ,𝑄𝑛]𝑇 . The dynamic equation (1) comprises a set of 𝑛
second-order differential equations.
To solve these equations with numeric solvers or to tackle a control problem of a mechanical
system, it is desirable to have a system of 2𝑛 first-order differential equations instead. As a result,
Eq. (1) is further modified to the so-called state-space form

¤x= f (x,Q) (2)

where x = [q𝑇 , ¤q𝑇 ]𝑇 ∈ R2𝑛 is the state vector, and Q serves as the control input vector. The
nonlinear state function f can be written as

f (x,Q) =
[ ¤q
−𝑀−1 (C(q, ¤q) +G(q) −Q)

]
. (3)
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Our task now is to select a mechanical system and different sets of GCs that describe its kinematics.
Then, for the selected sets of GCs, we formulate and solve the dynamic equations in Eq. (2), where
f is defined by (3).

3 KINEMATICS OF A SPHERICAL PENDULUM
As our test system, we consider a single-link spherical pendulum which is symmetric with respect
to the rotation about its axis, as shown in Fig. 1a. We intentionally chose the spherical pendulum
because its motion is three-dimensional, while the motion of a simple pendulum is only two-
dimensional. Although in reality the spherical pendulum still has a limited range of angular
motion, we can assume that there are no restrictions on the range of its motion. Three angles are
required to correctly orient a three-dimensional object in the three-dimensional space. However,
due to rotational symmetry around its own symmetry axis, only two angles are used to fully specify
the configuration (orientation) of the pendulum in our model. This pair of angles will be denoted
as 𝑞1 and 𝑞2. The Euler angles were generalized to rotations with respect to non-orthogonal axes
in [14], also called Davenport angles [15, 16]. In this work, Davenport angles are used as GCs.
The mass, inertia matrix about the center of mass, length, and the length up to the center of mass
of the pendulum will be designated by 𝑚, 𝐼, 𝐿, and 𝐿𝑐 , respectively.
In the following, the Denavit-Hartenberg (DH) convention will be utilized to derive the kinematics
of the pendulum [17, 18]. The fixed global axes 𝑋 , 𝑌 , 𝑍 (Fig. 1) are used later to visualize the
simulation results. The local axes 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑖 = 0,1,2, define a frame 𝑖. These frames are used to
derive the kinematics with the DH convention. To simplify the visualization, the local 𝑦𝑖 axes are
not shown in Fig. 1. The local axes 𝑥0, 𝑦0, 𝑧0 are also fixed. Even if they might seem redundant
due to the presence of 𝑋 , 𝑌 , 𝑍 , their introduction facilitates the derivation. The counterclockwise
rotation angles of 𝑞1 and 𝑞2 are determined by the right-hand rule. The origin of the local coordinate
system 2 can be located either at the end of the link or at its center of mass. In the derivations, the
latter is chosen, but in Fig. 1, the former is used for the presentation clarity. In what follows, we
will consider four cases with different sets of GCs.
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Figure 1: Schematic diagrams of the spherical pendulum (a), its kinematics with coordinate frames,
angular parameters, and GCs for Cases I, III (b) and Cases II, IV (c).

3.1 Case I
In the first case, we assume that the axis of the first GC 𝑞1 is aligned along the global axis 𝑋 , while
the axis of the second GC has an arbitrary initial direction with respect to the global axes (see
Fig. 1b). The rotations are assumed to be intrinsic. Due to the rotation around the local axis, the
direction of 𝑞2 is affected by 𝑞1. There are three angular parameters for this system: [ − the angle
between 𝑧0 and 𝑧1 with respect to the axis 𝑥1, Y − the angle between 𝑥1 and 𝑌 with respect to the
axis 𝑋 , and 𝜑 − the angle between 𝑥1 and 𝑥2 with respect to the axis 𝑧2. We note that the unit vector
𝑥1 is in the 𝑌𝑍 plane. Additionally, there are two spatial parameters 𝑑2 and 𝑎2, which are used in
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the DH derivations. The geometry results in the following identities for the system parameters

𝑑2 = 𝐿𝑐𝑠([)𝑐(Y), (4a)

𝑎2 = −𝐿𝑐
√︃
1− (𝑠([)𝑐(Y))2, (4b)

𝜑 = atan2
(
− 𝑐([)𝑐(Y)√︁
1− (𝑠([)𝑐(Y))2

;
𝑠(Y)√︁

1− (𝑠([)𝑐(Y))2
)
, (4c)

where 𝑠([) and 𝑐([) are short notations for sin[ and cos[ functions, and similarly for the Y. Given
𝑥 and 𝑦, the output of the function atan2(𝑦;𝑥) is the angle in the range (−𝜋, 𝜋]. It can be observed
from Eq. (4) that 𝜑, 𝑑2 and 𝑎2 depend only on the other two parameters: [ and Y. The link and
joint parameters for a spherical pendulum are summarized in Tab. 1, where \𝑖 , 𝑑𝑖 , 𝑎𝑖 , and 𝛼𝑖 denote
the corresponding DH parameters.

3.2 Case II
In the second case, it is assumed that the axis of the first GC 𝑞1 is tilted with respect to the global
frame, while the second GC 𝑞2 has its initial direction aligned with respect to the global axis 𝑌 ,
as shown in Fig. 1c. Again, intrinsic rotations are assumed, so that the direction of the axis 𝑞2 is
influenced by the rotation 𝑞1. There are two parameters in this system: [ − the angle between 𝑧0
and 𝑧1 with respect to the axis 𝑥1, and Y − the angle between 𝑥1 and 𝑥2 with respect to the axis
𝑧2. We note that 𝑥1 is in the 𝑋𝑍 plane. Similarly to Case I, the link and joint parameters for the
spherical pendulum are listed in Tab. 1.
The homogeneous transformation matrices [19] for the Cases I and II are obtained by substituting
the DH parameters into the homogeneous transformation matrix 𝑖−1𝐴𝑖 ∈ R4×4 from the local frame
𝑖 to the frame 𝑖-1 defined by

𝑖−1𝐴𝑖 =



𝑐(\𝑖) −𝑐(𝛼𝑖)𝑠(\𝑖) 𝑠(𝛼𝑖)𝑠(\𝑖) 𝑎𝑖𝑐(\𝑖)
𝑠(\𝑖) 𝑐(𝛼𝑖)𝑐(\𝑖) −𝑠(𝛼𝑖)𝑐(\𝑖) 𝑎𝑖𝑠(\𝑖)
0 𝑠(𝛼𝑖) 𝑐(𝛼𝑖) 𝑑𝑖
0 0 0 1


(5)

and including both translation and rotation. The position of the center of mass in the local body-
fixed frame 2 is 2r2 = [0, 0, 0, 1]𝑇 , because the origin coincides with the center of mass. With
respect to the global frame 0, the center of mass of the link is r2 = 𝑇2 2r2, where 𝑇2 = 0𝐴1 1𝐴2 is the
combined homogeneous transformation matrix from the frame 2 to frame 0. The potential energy
of the link is 𝑉 = −𝑚g𝑇 r2, where g = [𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 , 0]𝑇 and 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 are the components of the
gravitational constant 9.81 m/s2 in the frame 0. For instance, in Case I, g = 9.81[1, 0, 0, 0]𝑇 ,
while in Case II, g = 9.81[𝑐(Y), 𝑐([)𝑠(Y), -𝑠([)𝑠(Y), 0]𝑇 .
The linear velocity of the center of mass in the global frame 0 can be obtained as v2 = ¤r2 = ¤𝑇2 2r2.
The translational kinetic energy is 𝐾𝑡 = 1/2𝑚v22. The angular velocity of the link around its center
of mass in the body-fixed frame 2 is 2𝝎2 = 𝑇𝑇2 q1 + 1𝐴𝑇2 q2, where q𝑖 = [0, 0, ¤𝑞𝑖 , 0]𝑇 for 𝑖 = 1,2.
Then, the rotational kinetic energy is 𝐾𝑟 = 2𝜔𝑇

2
2𝐽2

2𝜔2/2, where 2𝐽2 ∈ R4×4 is the inertia matrix
in the body-fixed frame 2. This matrix can be written as

2𝐽2 =



𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧 0
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧 0
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧 0
0 0 0 0


=


2𝐼2
3×3

0
3×1

0
1×3

0


. (6)

The total kinetic energy is 𝐾 = 𝐾𝑡 +𝐾𝑟 . Both 𝐾 and 𝑉 are the functions of GCs 𝑞1, 𝑞2, and the
parameters [, Y.
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Case I Case II
Joint, 𝑖 \𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 Joint, 𝑖 \𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖
1 𝜋

2 − Y + 𝑞1 0 0 −[ 1 𝑞1 0 0 −[
2 𝜙+ 𝑞2 𝑑2 𝑎2 0 2 Y + 𝑞2 0 −𝐿𝑐 0

Table 1: DH parameters and variables for a spherical pendulum.

3.3 Case III
Geometrically, this case is similar to Case I, but the rotations 𝑞1 and 𝑞2 are assumed to be extrinsic.
In other words, the axes of the rotation of 𝑞1 and 𝑞2 are fixed with respect to the global frame X-Y-Z.
Therefore, the rotation 𝑞1 does not affect the axis of rotation of 𝑞2. Since the DH convention is
only applicable to intrinsic rotations, in this subsection we use simple rotation matrices 𝑅 ∈ R3×3
to describe the kinematics.
The rotation matrix for 𝑞1 will be a simple rotation matrix relative to the 𝑧-axis. From Fig. 1b,
it can be observed that in the global frame 0 the unit vector 𝑧1 = [−𝑠([)𝑐(Y), 𝑠([)𝑠(Y), 𝑐([)]𝑇 .
Thus, both 𝑧1 and 𝑞2 define the principal rotation axis and the angle by which the rotation matrix
1𝑅2 can be found

1𝑅2 =


𝑘1𝑠

2([)𝑐2(Y) + 𝑐(𝑞2) −𝑘1𝑠2([)𝑠(Y)𝑐(Y) − 𝑐([)𝑠(𝑞2) −𝑠([) (𝑘1𝑐([)𝑐(Y) − 𝑠(Y)𝑠(𝑞2))
−𝑘1𝑠2([)𝑠(Y)𝑐(Y) + 𝑐([)𝑠(𝑞2) 𝑘1𝑠

2([)𝑠2(Y) + 𝑐(𝑞2) 𝑠([) (𝑘1𝑐([)𝑠(Y) + 𝑐(Y)𝑠(𝑞2))
−𝑠([) (𝑘1𝑐([)𝑐(Y) + 𝑠(Y)𝑠(𝑞2)) 𝑠([) (𝑘1𝑐([)𝑠(Y) − 𝑐(Y)𝑠(𝑞2)) 𝑘1𝑐

2([) + 𝑐(𝑞2)


.

(7)
where 𝑘1 = 1− 𝑐(𝑞2).

3.4 Case IV
This case is similar to Case II, but this time with the extrinsic angles 𝑞1 and 𝑞2. Similarly to Case
III, 𝑞1 does not influence the rotation axis of 𝑞2. The rotation matrix for 𝑞1 is obtained from the
unit vector 𝑧0 = [-𝑠([)𝑠(Y), 𝑐([), 𝑠([)𝑐(Y)]𝑇 (see Fig. 1) which specifies the principal axis. Thus,
the rotation matrix is

0𝑅1 =


𝑘2𝑠

2([)𝑠2(Y) + 𝑐(𝑞1) −𝑠([) (𝑘2𝑐([)𝑠(Y) + 𝑐(Y)𝑠(𝑞1)) −𝑘2𝑠2([)𝑠(Y)𝑐(Y) + 𝑐([)𝑠(𝑞1)
−𝑠([) (𝑘2𝑐([)𝑠(Y) − 𝑐(Y)𝑠(𝑞1)) 𝑘2𝑐

2([) + 𝑐(𝑞1) 𝑠([) (𝑘2𝑐([)𝑐(Y) + 𝑠(Y)𝑠(𝑞1))
−𝑘2𝑠2([)𝑠(Y)𝑐(Y) − 𝑐([)𝑠(𝑞1) 𝑠([) (𝑘2𝑐([)𝑐(Y) − 𝑠(Y)𝑠(𝑞1)) 𝑘2𝑠

2([)𝑐2(Y) + 𝑐(𝑞1)


,

(8)
where 𝑘2 = 1− 𝑐(𝑞1). The rotation matrix for 𝑞2 is a simple rotation matrix about the 𝑦-axis.
For Cases III and IV the overall rotation matrix is found as 𝑅2 = 1𝑅2 0𝑅1 (in reverse order), due
to the rotation sequence with respect to the global axes (extrinsic rotations). The position of the
center of mass in the initial configuration is 2r2 = [-𝐿𝑐 , 0, 0]𝑇 . The same radius vector after the
rotations becomes r2 = 𝑅2 2r2 (expressed in the frame 0). By redefining g = [9.81, 0, 0]𝑇 , the
potential energy of the link equals 𝑉 = −𝑚g𝑇 r2. By using the linear velocity of the link center
of mass v2 = r2 = ¤𝑅2 2r2, the translational kinetic energy is found as 𝐾𝑡 = 1/2𝑚v22. The angular
velocities in the global frame are 𝜔2 = [-𝑠([)𝑐(Y) ¤𝑞2, 𝑠([)𝑠(Y) ¤𝑞2, ¤𝑞1 + 𝑐([) ¤𝑞2]𝑇 for the Case III
and 𝜔2 = [-𝑠([)𝑠(Y) ¤𝑞1, 𝑐([) ¤𝑞1 + ¤𝑞2, 𝑠([)𝑐(Y) ¤𝑞1]𝑇 for the Case IV. The corresponding rotational
kinetic energy in the global frame can be expressed as 𝐾𝑟 = 1/2𝜔𝑇

2 𝐼2𝜔2. The inertia matrix in
the global frame is 𝐼2 = 𝑅2 2𝐼2𝑅𝑇2 ∈ R3×3, where 2𝐼2 ∈ R3×3 is the inertia matrix in the body-fixed
frame (upper-left submatrix of 2𝐽2 in Eq. 6). As in Cases I and II, both the total kinetic energy
𝐾 = 𝐾𝑡 +𝐾𝑟 and the potential energy depend on the GCs 𝑞1, 𝑞2, and the parameters [, Y.
The Lagrangian is found as 𝐿 = 𝐾−𝑉 . By using the Lagrangian in the Lagrange-Euler equations of
motion, a system of two coupled second-order differential equations is obtained for the link motion
in terms of the GCs 𝑞1 and 𝑞2. These equations contain the parameters [ and Y and can be written
in the form of Eq. (1) by defining the vector of the GCs as q = [𝑞1, 𝑞2]𝑇 and the vector of the GVs
as ¤q = [ ¤𝑞1, ¤𝑞2]𝑇 .

https://doi.org/10.3311/ECCOMASMBD2021-112

239



4 SIMULATIONS
Simulations were performed to investigate the influence of a set of GCs on the dynamic behavior.
For selected values of parameters [ and Y, the dynamic equations of motion were automatically
generated using the Lagrangian formalism and the Symbolic Math Toolbox™ of MATLAB. The
obtained nonlinear differential equations were transformed to the form of Eq. (2) suitable for
numerical integration. For all four cases, there are singularities at [ = 0 and [ = 𝜋, where the axes
of 𝑞1 and 𝑞2 coincide. Therefore, by specifying the number of intervals 𝑁 ∈ N and the angular step
size Δ = 𝜋/𝑁 , the range of variation for [ is chosen as [ = 𝑖Δ, 𝑖 = 1,2, . . . , 𝑁 − 1 ∈ N. Similarly,
the range for Y is Y = 𝑖Δ, 𝑖 = −𝑁,−𝑁 + 1, . . . , 𝑁 − 1 ∈ Z. The physical parameters were assumed
to have the values 𝑚 = 1, 𝐿 = 1, 𝐿𝑐 = 1, 𝐼 = 03×3 corresponding to a simple mass-point spherical
pendulum.
The analytical description of amass-point spherical pendulum oscillation expressed in the spherical
coordinate frame was also obtained as

¥𝑞1 = 𝑠𝑞1𝑐𝑞1 ¤𝑞2− 𝑔

𝐿𝑐
𝑠𝑞1, ¥𝑞2 = −2 𝑠𝑞1𝑐𝑞1

𝑠𝑞21
¤𝑞1 ¤𝑞2. (9)

Here, 𝑞1 and 𝑞2 are denoting the polar and azimuthal angles, respectively. The solution of
Eq. (9) serves as a baseline case. The root-mean-square (RMS) error 𝐸𝑟 was computed as
𝐸𝑟 =

√︃∑𝑁𝜏

𝑖=1 [(𝑋𝑖 − 𝑋𝑖,𝑟 )2 + (𝑌𝑖 −𝑌𝑖,𝑟 )2 + (𝑍𝑖 − 𝑍𝑖,𝑟 )2]/𝑁𝜏 where 𝑋𝑖 and 𝑋𝑖,𝑟 are the 𝑥 components
of the center of mass of the pendulum in the global 𝑋𝑌𝑍 frame obtained from a set of GCs and from
the baseline model, respectively. The number of time samples is 𝑁𝜏 . Each solution of the dynamic
equation corresponding to a specific set of GCs was compared to the baseline case through 𝐸𝑟.
Additionally, the simulation time 𝜏 was recorded for each combination of the parameters [ and Y.
Two different initial conditions (ICs) were considered. The first IC (denoted by IC1) corresponds
to the situation where the initial values of GCs are nonzero, i.e., 𝑞1 ≠ 0, 𝑞2 ≠ 0, while the initial
values of the GVs are zero, i.e., ¤𝑞1 = ¤𝑞2 = 0. The second IC (denoted by IC2), assumes that the
initial values of the GCs are zero 𝑞1 = 𝑞2 = 0, while the initial values of the GVs are nonzero. The
numerical values of the ICs depend on the selected values of the parameters [ and Y. Therefore, the
correct initial values must be computed for each simulation. For a given initial link position r2𝑖 and
velocity v2𝑖 in the global reference frame, the corresponding ICs at arbitrary values of [ and Y can
be found by solving the nonlinear algebraic equations r2(𝑞1, 𝑞2) − r2𝑖 = 0 and v2(𝑞1, 𝑞2) −v2𝑖 = 0
for 𝑞1 and 𝑞2. The obtained initial values for the GCs are denoted as 𝑞1,𝑖 and 𝑞2,𝑖 . This task was
accomplished using the nonlinear system solver fsolve of MATLAB with the default settings,
except that the maximum number of allowed iterations was set to 103.
Using the appropriate ICs, the MATLAB function ode45 was utilized to solve nonstiff differential
equations and to simulate the system behavior for each combination of [ and Y. The number of
steps used to vary the parameters was chosen to be 𝑁 = 20. The duration of the simulation time was
set to 20s, with a sampling interval of 1 ms, i.e., 𝑁𝜏 = 20000. The relative and absolute tolerance
levels were set to 10−4. The simulations were performed on a ThinkPad notebook with an Intel
Core i5-10310U CPU processor and 16 GB RAM.

5 RESULTS
From the numerical simulation point of view, the most important factors are the actual simulation
time 𝜏 and the accuracy of the simulation results, evaluated by 𝐸𝑟. The RMS simulation error
for the Cases I-IV and two different ICs are shown in Fig. 2. Each sub-figure displays the RMS
error 𝐸𝑟 as a function of the parameters [ and Y. The gray dots indicate the parameter values
for which the ICs were found for a given set of GCs. The colored dots indicate the RMS error
value for those parameter values where the dynamic equations were integrated. In regions without
colored dots (white background) the ICs allowing the integration were not found. This behavior
is expected because the initial link position might not be attainable for some sets of GCs. The set
of GCs for which dynamic equations were integrated is a subset of a set of GCs for which ICs
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were found, which in turn is a subset of a set of all possible GC variations. For many sets of GCs
with admissible ICs, the corresponding dynamic equations of motion were not integrated due to
the divergence of the integration process at a certain simulation instant. The fact the ICs were not
found for all combinations of [ and Y, and that the equations of motion were not integrated for all
cases with the correct ICs, shows that a set of GCs influences the system dynamics.
An orthogonal set of GCs does not necessarily result in the smallest 𝐸𝑟. For instance, for Case
I with both IC1 and IC2, 𝐸𝑟 has smaller values (by a factor of two to four) for the set of non-
orthogonal GCs in comparison with the simulations for the set of orthogonal GCs corresponding
to [ = 𝜋/2 and Y = ±𝜋/2. This might be explained by different degrees of coupling and interplay of
simulation errors in the dynamic equations of motion. For Cases I and III, “clusters" of integrable
sets of GCs are grouped around [ = 𝜋/2 and Y = ±𝜋/2 (valid for both ICs). On the other hand,
for Y = 0 or 𝜋 the dynamic equations were not integrated, which makes sense because for these
parameter values the axis of 𝑞2 coincides with the initial vertical link position and thus becomes a
redundant DOF. A similar conclusion can be drawn for the integrable “clusters" for Cases II and IV
around [ = 𝜋/2 and Y = 0 or 𝜋. In these cases, at Y = ±𝜋/2 dynamic equations were not integrated
due to the aforementioned reason. Thus, the obtained results suggest that there is no clear strategy
for the selection of the optimal set of GCs that would minimize the RMS error 𝐸𝑟. However, by
choosing an orthogonal set of GCs we ensure that the obtained model is integrable.

Figure 2: The RMS 𝐸𝑟 for Cases I-IV with two different ICs. Note that the color bars have different
scaling for each subplot.
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Figure 3: Simulation time (log10(𝜏/𝜏𝑟 )) for Cases I-IV with two different ICs. The color bars have
different scaling for each subplot.

Simulation times are shown in Fig. 3 on a logarithmic scale log10(𝜏/𝜏𝑟 ). Here we can clearly see
that the choice of the orthogonal set of GCs leads to a faster simulation. This observation is valid
for four cases and for both ICs. For example, simulations with a non-orthogonal set of GCs can
require two to five orders of magnitude longer simulation time compared to that with orthogonal
counterparts. As a result, the orthogonal sets of GCs ([ = 𝜋/2 and Y = ±𝜋/2 for Cases I and III,
[ = 𝜋/2 and Y = 0 (or Y = 𝜋) for Case II and IV) lead to more efficient simulations. In fact, for the
Cases I-IV, the minimum values of the real simulation time are equal to 0.17, 0.77, 0.46, 2.12 s
(IC1) and 0.15, 0.63, 0.36, 1.48 s (IC2), respectively. Thus, using the local Davenport angles
defined for intrinsic rotations leads to faster simulations (by a factor of two to three) compared to
the global Davenport angles defined for extrinsic rotations. Finally, it can be observed that using
the first GC with an arbitrary rotation axis direction (Cases II and IV) results in slower simulations
than using the set of GCs with an arbitrary direction of the second rotation axis (Cases I and III).
In summary, we conclude that a set of GCs affects the description of the system dynamics,
simulation error and simulation time. The optimal set of GCs that minimizes the RMS error does
not simultaneously minimize the simulation time and vice versa.
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6 Conclusions
Different sets of GCs (generalized Euler angles) have been considered from the accuracy point of
view and the computation time. It has been shown that there exists a set of orthogonal GCs that
allows a fast integration of the equations of motion. However, the use of orthogonal Davenport
angles does not necessarily result in the minimum gross simulation error. In certain cases, non-
orthogonal Davenport angles yield the minimum gross simulation error. Additionally, it has been
observed that the use of intrinsic Davenport angles as GCs leads to more efficient simulations
compared to extrinsic Davenport angles.
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ABSTRACT

The development of a compliant (or flexure-based) manipulator with redundant ac-
tuation has been considered before, showing that the redundancy can be exploited to
increase the support stiffness and reduce actuator loads. In this previous design the
manipulator’s workspace has been defined to encompass all kinematically accessible
end effector positions. In this paper we reconsider the design philosophy. It appears
that limiting the workspace (“less”) ultimately results in a better performance in a
larger area (“more”) as before.

The dynamic performance of the manipulator is evaluated with a flexible multibody
model. The links are assumed to be rigid. The SPACAR software is used as its flex-
ible beam element can describe the non-linear behaviour of the flexure joints well at
rather large deflections. This numerically efficient model is well-suited for design
optimisation which aims at the largest workspace area while assuring a minimal par-
asitic natural frequency and limiting the local stresses throughout the full workspace.
Furthermore, the simulations show that preloading of the flexures results in smaller
required actuator torques.

An optimised design has been build. A control system has been synthesised that
handles the actuator redundancy by minimising the 2-norm of the driving torques. It
is demonstrated that the setup’s behaviour is similar to the model and that in particular
the preloading significantly lowers the required actuator torques.

Keywords: Flexure-based mechanisms, Redundantly actuated parallel kinematic ma-
nipulator (PKM), Non-linear beam elements, Experimental system identification, Ac-
tuator torque balancing

1 INTRODUCTION
In [1] a compliant and redundantly actuated 2-DOF 3RRR parallel kinematic manipulator (PKM)
(Figure 1(a)) has been introduced as “best of both worlds” for precision applications. Being a
compliant mechanism, or more precisely a flexure-based mechanism, deterministic behaviour can
be realised because of the low level of friction, hysteresis and backlash [2, 3]. Being also a re-
dundantly actuated PKM, it combines the advantages of PKM, i.e. the high stiffness, low inertia
and large accelerations, with an improved handling of singularities and optimised actuator loading
made possible by the redundancy [4, 5]. Simulations indeed demonstrated advantages of com-
bining both concepts. The flexure hinges in compliant manipulators inherently show a reduced
support stiffness for large joint angles. In a PKM with a redundant link this reduction can be
limited. Furthermore, the redundant actuation offers a possibility to combine load balancing tech-
niques with preloading of the compliant joints to reduce the actuator efforts needed to keep the
end effector (EE) stationary at any position different from the equilibrium position [1].

A PKM with “classical” joints can be operated throughout the complete kinematically admissi-
ble range [6]. Mimicking this behaviour with flexure joints is a challenge as the required joint
angles are quite large even for advanced joint concepts that emerged in recent years [7]. Hence
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(a) Original version of [1]. (b) Redesign with optimized workspace (this paper).

Figure 1. Designs of planar 2-DOF 3RRR PKM with compliant joints.

we investigate in this paper how a similar performance can be obtained throughout the same or
larger workspace area as before (“more”) when the joint angles are limited (“less”). This can be
accomplished by using longer links, which come with the drawback of an increased mass, but can
still be beneficial if this is compensated by an increased support stiffness due to less required joint
rotations. The optimisation of this trade-off is presented in this paper as well the experimental
validation with an implementation of a control scheme.

2 DESIGN OPTIMISATION
In this section, the steps involved in the mechatronic design of the manipulator are addressed. The
system to be manufactured should be a proof-of-concept that demonstrates its main characteristics.
High accuracy and high performance are not the main targets in order to limit the costs. E.g. metal
flexures are expected to show most ideal behaviour. However, 3D printing is used to realize the
mechanical components. Some larger parts are printed in PLA with the FDM process which is
relatively cheap. The flexure hinges require a higher accuracy for the thin leaf springs and are
printed in Nylon with the SLS process. Rotational motors are used to actuate the system, although
the bearings in these motors to some extent sacrifice the compliant behaviour of the manipulator.

2.1 Kinematic analysis and definitions of the workspace
The three arms of the 3RRR PKM are assumed to be similar and the actuators are located at the
corners of an equilateral triangle, see Figure 1. At first a simplified kinematic model is used to
determine the reachable workspace and the required joint rotations. The rigid links are connected
with ideal rotational joints. Two important geometrical parameters are the total length L of each
arm and the distance R of each actuator to the centre of the triangle. The workspace reachable
by the EE is bounded by three circular arcs with radii L of which an example is shown in red
and labelled “Defn 1” in Figure 2. This is the workspace that has been considered in [1]. The
worst case dynamic performance is found in the corners of this area where two arms are fully

Defn 1

Defn 2

Defn 3

Figure 2. Workspace definitions.
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stretched. In these locations the support stiffness will be lowest as several joints are at or close to
their extreme rotation angles.

The blue curves, labelled “Defn 2”, in Figure 2 present a first alternative workspace definition.
Instead of trying to move to all reachable locations, the corners are cut off e.g. by limiting the
workspace to the enclosed circle. It can be shown that using longer arms, i.e. larger L, and re-
stricting the joint rotations, a larger workspace area can be reached with the same ratio between
mass and support stiffness as before [8]. Although this is an improvement, it appeared that for
controlled EE motion still difficulties arose from singular behaviour near the three locations on the
enclosed circle where one of the arms is fully stretched.

Hence a third definition of the workspace is presented with the green curves, labelled “Defn 3”,
in Figure 2. This workspace is a circle which is some fixed offset radius Ro smaller than the
maximum enclosed circle such that the (near) singularities are avoided. This results in even more
reduced ranges of the rotations for the joints as presented in Figure 3. The joint angles in this
figure are computed for a manipulator where the total arm length L is split into equal halves for
the upper and lower arm respectively. The required rotational ranges are presented as functions of
the so-called (linear) workspace ratio, which is defined as

rws =
√

Aws/Afp (1)

where Aws is the workspace area and Afp is the triangular area of the manipulator’s footprint. It can
be seen that the third definition of the workspace requires smaller joint angles to reach the same
area. A drawback is that the arm length increases even more compared to “Defn 2” which could
result in less support stiffness as will be examined next in a dynamic analysis.

2.2 Parametric model
A more detailed flexible multibody model of the manipulator is used to obtain an optimal design
of the system to be manufactured with 3D printing. First the joint concepts are detailed. Next
relevant dimensional parameters are defined that are optimized.

In the previous design [1], the shoulder and elbow joint are butterfly joints [9]. This joint type is
used at the shoulder location for its small pivot shift compared to many other flexure joints. This
is also favourable in the current design as at the shoulder the rotation is driven by a motor with a
fixed rotational axis. For the elbow joint it is essential that the flexure can handle rather rotations
as can be seen in Figure 3. Although other, more complex joint types [7] may offer a larger range
of motion, the butterfly hinge will also be adequate for the present concept.

In the previous design, the basic working principle of the butterfly hinge was also used in the wrist
joint to connect the three arms. A disadvantage is the need of an intermediate body that can give
rise to additional rotational DOF at the EE, which can result in unwanted parasitic vibrations or

(a) Overview (b) Top view

Figure 4. Schematic representation of the Tri-Cartwheel joint.
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(a) Manipulator level. (b) Elbow and shoulder. (c) Wrist.

Figure 5. Design parameters.

even loss of the redundancy. Hence a so-called Tri-Cartwheel joint, see Figure 4 is proposed for
this connection. This hinge shows a larger pivot shift and more stresses will appear in the deformed
leaf springs, but for the considered range of motion this appears to be acceptable.

For design optimization the overall model of the manipulator with the joints is expressed in a set
of parameters, see Figure 5. To limit the computer time needed for the optimization, the number
of parameters is limited to a reasonable number as will be explained next. Some parameters are
fixed by design or it is know beforehand that some extreme value is the most likely outcome, see
Table 1(a). Table 1(b) lists the varying parameters with lower and upper bounds.

Table 1. Design parameters of the 3RRR RA-PKM as defined Figure 5.

(b) Variable parameters with upper bound (ub),
(a) Fixed parameters lower bound (lb) and optimal value (opt, Section 2.6).

Parameter Value Unit
ξs 22.5 deg
ξe 30 deg
R 230.5 mm
t 0.4 mm

hs/e 40 mm
hw 50 mm

Parameter ub lb opt Unit
As 9 20 12.0 mm
Ds 10 60 16.9 mm
Ae 9 20 15.9 mm
De 10 60 30.5 mm
Dw 10 60 56.4 mm
Lr 1.1 1.8 1.34
βs −90 0 −0.1 deg
βe −90 0 −71.3 deg
βw −30 30 20.0 deg
Ro 0 50 25.9 mm

At manipulator level, the link lengths and the location of the actuators strongly affect the work-
space ratio as defined in Eq. (1). The radius R at which the actuators are positioned, see Figure 5(a),
is fixed to the value used in [1]. The link lengths L1 and L2 of upper and lower arm, respectively,
are taken identical and are described by a single design variable, the length ratio Lr defined as

Lr =
L
R
=

L1 +L2

R
=

2L1

R
=

2L2

R
. (2)

A final parameter that affects the (effective) workspace is the offset radius Ro that was introduced
to exclude singularities from the workspace labelled “Defn 3” in Figure 2.

At hinge level, the leaf springs are characterized by their length, width h and thickness t. The latter
two dimensions are fixed for all joints. It is known that the thickness t of the leaf springs tends to
be minimized as it reduces stress build-up without affecting the support stiffness too much. Hence
t = 0.4 mm which is close the minimal required thickness for the used SLS process.

For the optimal performance of the Butterfly hinges, it has been found that the clearance angles ξs
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and ξe as indicated in Figure 5(b) need to be minimized [10]. Hence these angles are fixed to the
minimal estimated required clearance angle for the expected range of motion.

Finally, the stiffness properties of the joints depend on the other dimensions listed in Table 1(b)
as well as the hinge orientation angles βs, βe and βw. These angles describe the respective hinge
orientations from a global point of view, see Figures 5(b) and (c).

2.3 2-DOF dynamic model
A low order 2-DOF model is derived first. It should capture the main low frequent dynamic be-
haviour and will be used for the control synthesis. The low order model can be obtained relatively
straightforwardly e.g. using the Euler-Lagrange equation for the kinematic model of Section 2.1
supplemented with (link) mass and (joint) stiffness properties. The result can be expressed in the
usual way as

M̄(q)q̈+C(q, q̇)q̇+Q(q) = AT (q)τττ, (3)

where q are the two independent coordinates for which it is convenient to take the EE coordinates
xEE and yEE . Matrix M̄ is the configuration dependent (reduced) mass matrix; C accounts for
the Coriolis terms; Q represents the (non-linear) stiffness contribution and the transpose of the
Jacobian matrix A transforms the three actuator torques τττ into effective forces on the EE.

2.4 Stiffness balancing with preloaded joints
The term Q in Eq. (3) is directly linked to the finite stiffness of the flexure joints for rotation in the
compliant direction. In the neutral configuration of the manipulator with the EE in the centre, this
term is zero. To position the EE at locations near the extremity of the workspace, this term can be
quite large and even result in actuator saturation making these locations unreachable. Lowering
the stiffness is mostly not possible, but as shown in [1] preloading of the joints can result in lower
required actuator torques. Although preloading isn’t possible for the Nylon flexures, metal clock
springs can be installed at the hinges to realize preloading.

A quick way to evaluate the effectiveness of these springs makes use of an analysis of the stored
potential energy. Knowing the kinematic configuration of the manipulator, Section 2.1, the po-
tential energy stored in all flexure joints can be computed as a function of the EE position, see
Figure 6(a). With zero potential energy in the neutral configuration, the energy stored increases
towards the boundary of the workspace.

Similarly, the energy stored in the preloaded clock springs can be evaluated. It appears that this
energy can decrease when moving towards the boundary with adequate settings for preload and
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Figure 6. Potential energy stored in the flexure joints (left), balancing clock springs (middle)
and combined (right).
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stiffness. Figure 6(b) shows an example where the minimum energy level in the workspace is arbi-
trarily set to zero. Combining these plots give Figure 6(c) which illustrates that for the manipulator
with these balancing clock springs still some positive stiffness is observed, but less compared to
the unbalanced case. In this way it will be easier to reach the full workspace with limited actuator
torques.

2.5 Controller synthesis
Reconsidering the equation of motion (3), it can be seen that any specific motion can be accom-
plished by applying the effective force on the EE as follows from the right-hand side of this equa-
tion. In other words, the actuator torques should be such that the term AT (q)τττ equals the left-hand
side of this equation. Because of the redundant actuation there is no unique solution. Let’s con-
sider e.g. the stationary positioning of the manipulator in which case only the stiffness has to be
handled, i.e.

AT (q)τττ = Q(q), (4)

from which it can be seen that with one valid solution for τττ , all other solutions can be found by
adding any vector from the null space of the Jacobian matrix AT . A common procedure is to select
the set of torques τττ that minimize a specific norm. Considering the 2-norm, the solution equals

τττ = (AT (q))† Q(q), (5)

where ()† indicates the (Moore-Penrose) pseudo-inverse of the matrix.

It can be noted that in view of possible actuator saturation, the use of the ∞-norm is more adequate
as this minimizes the largest required actuator torque. However, it was found that the benefit
from this norm was relatively small and hence the simpler computation of the 2-norm will be
implemented in the set-up.

For controlled motion, the required effective EE force is generated by a control system, where
feedback and feedforward control can be combined. Feedforward makes use of system knowledge
as the equation of motion (3) is evaluated in real-time for a prescribed trajectory (q, q̇, q̈). Relevant
parameters of the manipulator need to be estimated. In this paper only relatively slow motions are
considered and hence only stiffness feedforward will be applied, i.e. Eq. (4).

In addition feedback control is used to account for model inaccuracies in the feedforward control
and disturbances. PID-control will be implemented following the approach of [11].

2.6 Design optimization
The workspace for the test-setup is optimized for the parametric model outlined in Section 2.2.
Ten design parameters have been defined in Table 1(b). Material properties are given in Table 2
for the materials introduced at the beginning of this Section 2.

To assure the optimization doesn’t result in deteriorated dynamic performance, constraints are
imposed that require the parasitic natural frequencies to be at least as high as in the previous
design [1]. Table 3 lists all constraints, which also impose that the stresses are below the maximum
allowable stress, Table 2, with a safety factor of 1.5. Furthermore, the actuator limits have to be
taken into account. The upper arms are actuated with Maxon EC45 Flat 70W motors that offer a
maximum nominal torque of 0.128 Nm.

The MATLAB script fminsearchcon is used for the optimization, which implements a direct
search method where non-linear inequality constraints are included by means of a penalty func-
tion [12]. As the goal is to obtain the maximum workspace, the inverse of the workspace ratio
rws of Eq. (1) is minimized. As the constraints include natural frequencies and stresses these are
evaluated in the neutral configuration as well as in two critical EE locations on the border of the
workspace. For this purpose a flexible multibody model of the manipulator has been defined in
the SPACAR software package [13]. All leaf springs are modelled with non-linear flexible beam
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Table 2. Material properties of the test setup.

Material Property Value Unit
PolyLactic Tensile strength 45 MPa
Acid (PLA) Young’s modulus 3.5 GPa

Density 1250 kg/m3

Nylon Tensile strength 45 MPa
(PA2200) Young’s modulus 1.7 GPa

Density 930 kg/m3

Table 3. Non-linear inequality constraints.

Property Value Unit
Maximum stress ≤ 30 MPa
First parasitic

eigenfrequency ≥ 45 Hz
Second parasitic

eigenfrequency ≥ 50 Hz
Balanced driving

torque ≤ 0.1 Nm
Non-balanced

driving torque ≤ 0.4 Nm

elements as this has been proven to be an accurate and efficient approach [1, 7, 10]. The obtained
optimal values for the parameters are included in Table 1 and a CAD model of the manipulator
is shown in Figure 1(b). Figure 7(a) illustrates the first natural frequency throughout the work-
space. Clearly it satisfies the constraint and it can be verified that the other constraints are not
violated either. The parasitic natural frequency doesn’t vary much which shows that the support
stiffness remains rather constant. The accompanying vibration mode in the neutral configuration
is presented in Figure 7(b) from which it is clear that this is an out-of-plane vibration.
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(a) First parasitic frequency (in Hz). (b) First parasitic vibration mode.

Figure 7. First parasitic vibration.

Evaluating the optimized design, it appears that it results in a further increase of the workspace
area while the first simulated parasitic natural frequency is kept above 45 Hz. More specifically,
the workspace ratios as shown in Figure 2 are respectively rws = 0.1922 in the original “Defn 1”
(red) [1], rws = 0.2167 for “Defn 2” (blue) [8], but can now be increased to rws = 0.3532 (green).

3 EXPERIMENTAL RESULTS
3.1 System identification
The dynamic behaviour of the actual manipulator has been characterized with system identification
where a multi-sine excitation is used to estimate the frequency response of Figure 8. In agreement
with the equation of motion (3), the redundant actuation and the sensing are transformed to two
degrees of freedom being both in-plane forces Fx, Fy and translations xee, yee of the EE. This
experiment is performed at 14 locations in the workspace (red curves). The blue curves indicate
averages of these measurements.

In the theoretical equation of motion, the translations in x and y directions of the EE near the
neutral configuration can be modelled as decoupled motions. In the FRF plots this is confirmed as
the diagonal terms are larger than the off-diagonal cross-coupling terms.

The first parasitic natural frequency appears to be about 500 rad/s or 80 Hz. This frequency is
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Figure 8. Identified frequency response functions (FRF) in 14 different EE locations (red)
and average (blue).

higher than expected in Section 2.6. A possible cause could be a larger stiffness, which to some
extent can be explained as the model doesn’t account for flexible shaft couplings that are installed
between the actuators and upper arms. This higher natural frequency could be beneficial for the
controller stability. Unfortunately however, the FRF plots also show an anti-resonance (or zero pair
in the transfer function) near 30 rad/s or 5 Hz. Even worse, in some of the FRF curves this zero pair
is combined with a phase lag of −180◦ instead of the usual phase lead of 180◦, which indicates
these are non-minimum phase zeros. Such zeros will make it hard or impossible to achieve a high
control bandwidth. Although these anti-resonances and accompanying zeros can be simulated in
the SPACAR models, their existence was not included in the design optimization.

3.2 Controller tuning
The observation in the previous section of a mainly diagonal plant can be used to apply a diago-
nal controller as well. In this way the settings of the PID-controller are found quite straightfor-
wardly [11]. However, to handle the destabilizing effects from the anti-resonances described in
the previous section, the PID-controller is supplemented with a notch filter. Setting the filter fre-
quency at about 495 rad/s or 79 Hz, a stable closed-loop system could be obtained with a open-loop
crossover frequency of about 18 rad/s or 3 Hz.

3.3 Reference tracking
To demonstrate the controlled motion of the EE a circular reference trajectory is defined close to
the boundary of the workspace, see Figure 9(a). An initial linear segment is added to move the
EE from the neutral configuration to the circle. The actual motion is included in the plot. It shows
reasonable tracking accuracy with some occasional small spikes. These may be caused by cogging
effects of the (direct-drive) motors or other disturbances which are only weakly suppressed as the
controller bandwidth is rather limited. Also noticeable is an increased noise level in the lower
right corner of the circle. This is due to quantisation noise of the digital encoders that measure
the rotation with a resolution of 512 lines per revolution, so 2048 counts per revolution. In this
experiment only two encoders were used, which results in an output singularity in this region.
This can be avoided by exploiting the redundant sensing. Figure 9(b) presents the actuator torques
during the motion, which will be discussed in more detail next.
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Figure 9. Tracking of a circular reference path.

3.4 Stiffness balancing
As outlined in Section 2.4 the preloading of the flexure joints plays an important role in reducing
the actuator torques needed to cope with the stiffness of the joints. The balancing of the actuator
torques is investigated by positioning the EE throughout the workspace with and without preload-
ing of elbow and shoulder joints. Figure 10(b) shows that with preloading the maximum torques
of all actuators stay well within the imposed limit. Without this preloading it can be seen in Fig-
ure 10(a) that the torque limits are already exceeded before the edges of the workspace are reached.
Hence only a smaller area is shown.
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Figure 10. Experimentally determined actuator torques for the unbalanced (a/top) and bal-
anced (b/bottom) manipulator.
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4 CONCLUSION
This paper shows a new design approach for a planar 2-DOF 3RRR parallel manipulator with
redundant actuation and compliant joints, i.e. flexure joints. The goal was to maximize the work-
space area in which a similar or better performance could be realized as before [1] in terms of the
first parasitic natural frequency. It turned out to be beneficial to limit the workspace to a circle that
avoids (near) singular manipulator configurations. In this way the ranges for the joint rotations are
restricted such that the joint support stiffnesses of the deformed flexures are reduced less. This
allows for the use of longer link lengths which in the end results in a significant increase of the
workspace area. In addition a new concept is proposed for the wrist joint connecting the three arms
in the end effector. A flexible multibody model has been built where the leaf springs in the flexure
joints are modelled with the non-linear beam elements of the SPACAR software. The parameters in
this model have been optimized to obtain the largest workspace area while satisfying constraints
regarding the parasitic natural frequencies, local stresses and actuator limits.

A hardware implementation of this manipulator has been realized. Although the mechanical parts
of this setup have been manufactured with relatively low-cost 3D printing, it demonstrates some of
the main features like the sufficiently high parasitic natural frequency. However, it also appeared
that the closed-loop performance is considerably limited by the existence of anti-resonances or
transfer function zeros that could have been predicted by the SPACAR flexible multibody models,
but were not taken into account during the design. A further increase of the workspace area could
result from applying a more advanced joint type for the elbow joints allowing larger rotations.
For true high performance the flexure hinges should be manufactured from different material like
e.g. metal. Also the use of frictionless actuators like pure torque motors should be considered.
Attention should be paid to using sufficiently accurate sensors and taking advantage of the sensor
redundancy. Finally, in order to handle higher velocities the stiffness or position dependent feed-
forward control should be supplemented with the acceleration, velocity and position dependent
inertia effects of the equation of motion (3).

The setup in particular proved that preloading of the shoulder and elbow joints results in a signifi-
cant reduction of the required actuator torques in agreement with the modelled prediction.
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ABSTRACT
This paper presents a bond graph model of the 3-CRS parallel robot and the associated simulations.
The structural and modular approach proposed with bond graph permits the systematic modeling
of mechatronic multibody systems. From a library of elements, the model is built as an assembly
of components or modules (rigid bodies and kinematic joints) by following the structure of the
actual system.

The bond graph model of the robot consists of a multibody system (MBS) augmented with elec-
trical actuators and controllers. Simulations have been conducted to test several kinematic config-
urations, dynamics scenarios and to evaluate robot performance.

Keywords: Bond Graph, Parallel Robot, Mechatronics, Dynamics, Control.

1 INTRODUCTION
Context description For many applications in robotics (namely a quick robot for pick and place
[1, 2] or robots dedicated to machining [3]), it is crucial to take into account all the physical
phenomena: of course mechanics but also electrical and thermal. To do so, a mechatronic approach
is needed so as to gather, in the same model, different physics. Moreover, during the designing
of new parallel robots, different topologies of robot are tested. Having a tool which permits the
user to easily obtain the kinematics and dynamics for different topologies can reduce modeling
time and errors with regards to ad hoc methods. The bond graph (BG) offers this multi-physics
approach in the modeling, control and analysis of parallel robots. Computer science and software
dedicated to BGs have progressed considerably in the last two decades and give new insights on
older research works made in multibody modeling with bond graphs. [4, 5, 6].

Problem description The overall objective of this ongoing research work is to analyze the BG
approach in the modeling, simulation and control of parallel robots, as opposed to a classic ap-
proach. Different lines of work can be considered: a modular modeling approach thanks to its
graphical, structural and object oriented features, the possibility of model inversion–based
control with the bi-causal bond graph [7, 8, 9, 10, 11](causality feature), the model reduction
[12, 13, 14, 15] and the power flow analysis due to its intrinsic energetic properties. In this paper,
the aim is to develop a modeling framework of mechatronic robots with a systematic, structural
and modular approach. This work is an extension of the work done in [16, 17] by the use of a more
formalized and flexible library.

Case study In this paper, the study is focused on an original parallel robot: the 3-CRS, a parallel
reconfigurable robot proposed by C.Bouzgarrou [18, 19, 20].

https://doi.org/10.3311/ECCOMASMBD2021-192

257



Outline The remainder of the paper is organized as follows. Section 2 describes the kinematic
structure and the operation of the 3-CRS robot. The modeling and simulation framework is detailed
in section 3. Then, the full BG model of the robot will be presented in section 4. Finally, before
concluding, simulation results will be presented in section 5.

2 THE 3-CRS ROBOT
2.1 Description of the system
The first studies in this frame have been conducted on the 3-CRS [19]. This robot is an original
parallel mechanism having 6 degrees of freedom (DOFs) with only 3 limbs (Figure 1). This
mechanism uses two motorized joints per limb: the prismatic joint and the first revolute joint.
These two form an equivalent of one actuated cylindrical joint (C). The rest of the arm is composed
of four passive revolute joints equivalent to a revolute (R) and a spherical joint (S). This topology
has led to the name "3-CRS".

Figure 1: CAD visualization (a) and kinematics scheme (b) of the 3-CRS robot

2.2 Benefits of such a parallel structure
This new paradigm of actuation opens up research fields on new families of robots, which should
particularly interest the parallel robotics community. According to its dimensional synthesis, this
mechanism can have remarkable kinematic properties in its category such as a large orientation
workspace [18] or reconfiguration capabilities [20].

3 MODELING OF THE PHYSICAL SYSTEM
3.1 Modeling robots with BG
The bond graph was invented by H. Paynter [21] in 1959 and quickly developed in the mechanical
field by R. Rosenberg, D. Karnopp and D. Margolis [22] at MIT Boston, USA. Multibody systems
methods have been reviewed in [23]. Practical modeling guidelines for multibody systems with
bond graph have been formalized in [17]. In the past, few complex robots were simulated because
the equations had to be manually derived from bond graph. Over the last 20 years, software
environments have evolved to allow the user to fully take advantage of the graphical aspect of BG.
Moreover, equations are automatically generated and solved with classical ODE or DAE schemes.

3.2 A modular approach using a BG Multibody Models Library
The modeling of the robot has been conducted with a modular approach. It was derived from the
Tiernego and Bos [24] method for modeling multibody systems (MBS) with bond graph, which
consists of writing the Newton-Euler equations used with the absolute coordinate. Rigid bodies
and kinematic joints can be modeled beforehand as objects and form a library. The BG models
of the rigid bodies and the kinematic joints are detailed in [17]. This library can then be used to
model complex MBS by assembling the models of bodies and kinematic joints.
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The concept of this library presented in [17] has been broadened and consolidated by using 20-
sim’s software features. Every model contains different versions of itself which can be switched
using the "implementation" feature in 20-sim. These versions can allow the user to block the joint’s
DOFs using modular effort sources (MSe) or damping and friction elements (R, C). Similarly, it
is possible to change the rigid body’s angle definition from Cardan angles to a quaternion-based
transformation.

Figure 2: Overview of the Multibody Models Library

3.3 The robot’s physical model
3.3.1 modeling of the robot’s structure
Once the BG library for MBS has been completed, the physical model of the 3-CRS can be built
from an assembly of BG rigid bodies and kinematic joints.

R-C elements are used to suppress the DOFs of the joints. These R-C elements can represent a
small deformation of the kinematic joints. The orientations are expressed using Cardan angles.
Each body is defined by a center of mass and two anchor points which are placed relatively to
it. Therefore, the dimensions of each body is set by defining the anchor points’ local coordinates.
Finally, the center of mass (COM) is expressed in global coordinates to locate the part.

The initial configuration of the robot needs to be initialized on the 20-sim model. Indeed, the COM
coordinates and orientations of each part of the robot are required. To recover this information
relative to a specific pose of the robot, the motion transformations of all the kinematic chains
have been fully determined using the joint parameters which have been computed by the inverse
geometric model of the 3-CRS from a given end-effector pose. This data can then be automatically
incorporated into the model by running an external script. If the initial pose of the robot is not
modified, the 20-sim model does not require these script to run a simulation.
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3.3.2 Modeling of the actuators
The 3CRS robot requires 6 brushless AC synchronous motors to be mounted on the joints. The
motors and their associated power electronics and controller systems are provided by Parker Han-
nifin (the manufacturer). The motors are from the Parvex NX310EAK family capable of delivering
up to 1kW mechanical power at the shaft. For a rapid robotic system, brushless AC synchronous
motors are good candidates because of their very high torque-to-mass ratio which yields high dy-
namic performance (commonly 4 to 5 times higher than the brushed DC motor counterpart). In the
literature, BG modelling of AC synchronous motors are well established [25, 26, 27]. However,
in this study, we will consider in the first approach that the electrical dynamics of the motors is in-
finitely higher than the mechanical dynamics. This assumption enables us to propose a very simple
model of the actuators where input current is converted onto torque by a simple gain corresponding
to a constant motor’s torque sensitivity Kt.

The mechanical part of the motor is then modeled using a bond graph as shown on Figure 3. It is
coupled with a reductor and a ball-screw transmission.

Figure 3: BG model of an actuator

3.4 Full bond graph physical model
The full BG physical model of the 3-CRS can be seen on Figure 4.

The six actuators are connected to the three prismatic joints and the three revolute joints. As the
actuators are modeled using scalar bond graph, the output of these blocks imposes a flow on the
joint’s actuated degree of freedom. Therefore, three rotational speeds and three translation speeds
are imposed on the system.
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Figure 4: Full physical model of the 3-CRS
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4 CONTROL PRINCIPLE OF THE 3-CRS ROBOT
The control principle of the 3-CRS is described in the red box of Figure 5 and it is composed of
two main sections:

– A trajectory generation (strategy control) computing the end effector’s coordinate setpoints (X,
Y, Z, α , β , γ) and a following Inverse Geometric Model (IGM) to compute the corresponding joint
parameters (λa, θa, λb, θb, λc, θc).

- A robot controller (axis regulation loop) that computes each motor current so as to move the
end-effector of the robot to the desired pose (position and orientation).

Figure 5: Full model of the 3-CRS

4.1 Trajectory generation
Linear interpolation The "Motion Profile" block on the left-hand side of Figure 5 has only one
output named s. This is a coefficient evolving from 0 to 1 along a predefined curve. This coefficient
defines how fast the robot should go from its initial position pi to its final position p f .

The spacial trajectory generation is computed by the block "Trajectory Setpoints". This block uses
the path primitive method and generates a rectilinear path to the setpoint. Therefore, as a function
of the coefficient s, the pose p of the end-effector, and hence both the position and the orientation
can be written as:

p(s) = pi +
s

||p f − pi||
(p f − pi) (1)

Figure 6: Evolution of the coordinates of the end-effector’s COM

Inverse Geometric Model (IGM) The "IGM" block converts the end-effector pose given as an
input into the six actuated joints parameters (3 positions and 3 angles). Through an analytical study
and using transformation matrices, the IGM of the robot is explicitly solved (not presented here for
the sake of conciseness). For one position of the effector, there are four possible configurations on
each arm leading to 64 sets of solutions for the robot. This block ensures to select one of them and
outputs their numerical value. These six joint parameters are finally used to determine the joint
setpoints used in the "Robot Controller" block. The theory behind the inverse geometric model
has first been presented by Bouzgarrou [20] and will be detailed further in an upcoming paper.
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4.2 Axis regulation loop
For each actuated joint, the axis regulation loop is composed of two control law: A proportional
control law regulates the position and a proportional-integral (PI) control law is dedicated to speed
regulation. There are two axis regulation loops per arm : the first one controls the prismatic joint’s
linear position λ (m) and speed λ̇ (m.s−1) and the second one controls the rotational joint’s angular
position θ (rad) and speed θ̇ (rad.s−1). An example of prismatic joint controller is displayed on
Figure 7.

The first objective of the axis regulation loops is to get a response with zero static error. In terms
of dynamic performance, the goal is to give the fastest response with no overshoot. The value of
settings of the controllers have been determined analytically. The "Robot controller" block con-
tains three identical prismatic joint controllers (Figure 7) as well as three revolute joint controllers.

Figure 7: Axis regulation loop of an actuator

5 SIMULATION RESULTS
5.1 Minimum response time of the 3-CRS
For the sake of simplicity, the three prismatic joint’s actuators will be referred to as "λ -actuators".
Following the same principle, the rotational joint’s actuators will called "θ -actuators".

Even though the controllers have been set to give the fastest response with no overshoot, there will
be a threshold called minimal reconfiguration time ∆t of the robot under which the behavior of the
robot will be unreliable. Such a limit is expected to be due to inertia effects and to the motor’s
torque overload.

On Figure 8, the value of ∆t is slowly decreased until a significant overshoot appears on the sys-
tem’s response on either actuator. From there, the behaviour of the robot can be considered as
unreliable and the threshold can be quantified. For values of ∆t superior to 0.4 seconds, the max-
imum overshoot can be found on the λ -actuators and does not exceed 0.5 millimeters, equivalent
to a 0.2% error. However, when setting the response time to 0.3 seconds, the overshoot on this
actuator skyrockets to 4 millimeters, approaching 2% of error.
Therefore, the minimum response time of the model can be set to 0.4 seconds.

Even with such a value of ∆t, Figure 8(a) shows that the motors have not yet reached their max-
imum speed as the response still follows the command faithfully. This observation confirms that
the threshold of 0.4 seconds is due to inertia and torque overload. Ignoring the fact that the robot
will not follow the desired position, it is possible to decrease even more the response time to find
the joints’ maximum speed and acceleration.
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Figure 8: Behaviour of a λ -actuator for ∆t between 1s and 0.3s

5.2 Torque developed by the motors
This section will be dedicated to complete the study of the response time of the 3-CRS. In Section
5.1 the authors have stated that the position overshoot seen in Figure 8 for ∆t under 0.4 seconds
was due to the motor’s torque overload. Figure 9 confirms that statement. Indeed, this figure shows
that a torque saturation appears on the motor’s λ -actuators at 7.99 N.m for ∆t equal to 0.3 seconds.
The same figure could be drawn for the θ -actuators but in this range, the torque saturation has not
appeared yet.

This torque limit value of 7.99 Nm comes from the modeling of the motors. As the AC syn-
chronous motors’ electrical part has been modeled by a simple gain Kt corresponding to the mo-
tor’s torque sensitivity, the motors’ torque is proportional to the phase RMS input current. Figure 7
shows that a current limitation has been built in the controller. Therefore, the torque reaches a limit
whenever the current is at its maximum. The values of peak current and torque sensitivity have
been determined thanks to the motor’s data sheet. This behaviour unveils the limits of this simple
AC motor model. Assuming that the electrical part of the motor is perfect, it leads to a model
that has better performances than the real motor. This difference is visible in the data sheet which
displays a 6.6 Nm torque peak. For this reason, a more advanced model of the AC synchronous
motors is already being developed.

Finally, this torque analysis challenges the accuracy of the 0.4 seconds threshold defined in the
previous section. But, further analysis have shown that the real torque limit of 6.6 Nm was not
reached until ∆t was decreased to 0.38 seconds. Therefore, not only does the torque analysis con-
firms the previously defined value, but its also improves its accuracy. The response time threshold
can therefore be fixed to 0.39 seconds.
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Figure 9: Torque developed by the motors on the λ -actuators.

6 CONCLUSIONS
The different steps to model the complex 3-CRS parallel robot in BG with a modular approach
have been presented.

Thanks to its graphical and oriented object features, the BG allows a modular modeling approach
which can be efficient in the context of designing new parallel robots with different topologies.
The BG is also a well adapted tool for modeling mechatronic systems. Complete AC electrical
actuators could be integrated in the same model.

Dynamic simulations have been presented and used to analyze different robotic issues (minimum
response time of the 3-CRS and torques developed by the motors).
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1 Abstract

Model-plant mismatches can severely limit the effectiveness of conventional model-based motion design methods. To solve this
issue, a method for robust trajectory planning that can reduce the effects of parametric uncertainties is presented in this work. The
method is based on an indirect variational formulation, which is translated into a Two-Point Boundary Value Problem (TPBVP)
and then solved numerically. Robustness is obtained by incorporating into the problem the sensitivity functions of the plant, and
imposing some additional constraints on the initial and final points of the trajectory. A formulation aimed at reducing both the
residual and the transient oscillations, as well as keeping small the control effort, is also proposed. The work presents a numerical
verification of the effectiveness of the method for an underactuated system, such as a double-pendulum crane, by showing its
effectiveness and robustness when performing fast rest-to-rest motions.

2 Introduction

High-speed and precise motion of underactuated multibody systems is challenging since this kind of mechatronic systems requires
suitable trajectory profiles for limiting the vibrations that can incur both during the motion and after motion completion. The
problem has been dealt with in countless works, facing it either as a control design problem or as a motion design problem.
The latter approach might be convenient in all applications in which the use of a sophisticated control technique is limited by
the unavailability of high-bandwidth sensors [1]. A common classification of the vast literature on motion design marks the
distinction between model-free and model-based approaches. The first ones are mainly based on the use of properly interpolated
time laws to define either the motion in the joint space or in the operational space. Vibration reduction and precise tracking are
enforced by minimizing kinematic quantities, such as the jerk, or mixed performance indexes, thus enhancing the smoothness
of the motion profile [2, 3]. Such methods are often of convenient application due to their rather simple implementation and for
being suitable to a wide range of applications.

Model-based planning methods, in contrast, rely on the exploitation of the dynamic model of the manipulator for which the
reference inputs are planned. Among model-based methods, it is common to cast motion design problem as an optimal control
one, thus allowing to employ the results of an extensive and mature literature [4]. The motion design methods rooted in optimal
control can further be split between direct and indirect methods.

Direct methods use a proper discretized description of the kinematic quantities of the multibody system to translate an optimal
control problem into a parameter optimization one [5]. The resulting finite-dimensional problem is therefore solvable using one
of the many parametric optimization algorithms.

Indirect methods are instead based on calculus of variations, which is used to set-up and solve the motion design problem as
a Two-Point Boundary Value Problem (TPBVP). Successful applications of this methods are found, among others, for flexible
link robots [6], flexible joint robots [7], mobile robots [8], lumped spring-mass systems with nonlinear springs [9], and for
cable-driven robots [10], [11], [12] . Indirect control methods are generally chosen for their accuracy [4], however their field
of application is often limited to small scale problems by the difficulty of finding a numerical solution of the problem under
investigation. This limitation is commonly referred to as the ’curse of dimensionality’ [13]. Additionally, most of the indirect
methods proposed so far have limited robustness to mismatches between the description of the plant used for planning and the
actual system dynamics. This problem has been extensively dealt with in the field of closed-loop control, while it has received
less attention in the field of motion planning. Among the few works that, to the best of authors’ knowledge, focus explicitly
on robust motion design, one is [14], in which the optimization problem is mode robust by introducing in the cost function a
Gaussian cumulative noise term. Another relevant work is [15], in which the authors take into account the effects of a varying
payload on the motion design through the modification of bounds on the joint torques.

A different approach to model-based motion planning is the well-known input shaping technique. Input shaping motion planning
techniques work by convolving a reference signal, either a position reference or a force reference, with a baseline of impulses to
ensure reduced residual vibrations. The popularity of shaping filters is motivated by their very straightforward implementation
and for being suitable to a wide range of applications, such as in the movement of suspended loads [16], [17]. Shaping techniques
can be, however, unsuitable in some applications, such as the ones in which the time delay required by the shaping action is close
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to the specified motion time dictated by the application. The issue of robustness of input shaping has been also widely discussed,
leading to several robust versions such as the ZVD shaper [18]. Increasing robustness however exacerbates the aforementioned
problem of the delayed response.

This work proposes an indirect approach to robust motion planning in underactuated multibody systems. By exploiting the
mathematical frame proposed in [19] for inverse dynamics, and then extended in [20], the method computes the optimal reference
trajectory for rest-to-rest motion of an underactuated multibody system to accomplish several design tasks. First, it should ensure
reduced transient load oscillation, both in term of peak and average value, even in the execution of fast motions. Secondly,
reduced control effort is required, in term of reduced amplitude and harmonic content of the required accelerations for the
actuated coordinates. Finally, robustness with respect to an uncertain critical parameter should be granted. The numerical results
obtained provide a clear evidence of the improved capability of the proposed method over similar input shaping methods when
dealing with fast motion applications.

3 System model formulation

Let n be the number of degrees of freedom of the system under investigation and given a proper choice of a vector of n independent
coordinates q, a set of n nonlinear ordinary differential equations is used to describe its dynamics:

M(q)q̈(t) = K(q)+G(q, q̇)+B(q)F(t) (1)

M ∈ ℜn×n is the mass matrix, K ∈ ℜn is the vector of position-dependent forces while vector G ∈ ℜn collects gyroscopic and
centrifugal forces as well as the damping forces. The vector of the external actuation and control forces F ∈ℜm is input into the
system dynamics through the force distribution matrix B ∈ℜn×m. Since m < n, the system is underactuated. The dynamic model
in (1) can be rewritten by partitioning q into the vector of m actuated generalized coordinates, and the vector qu of the n−m
unuactuated ones [21]:

[
Maa Mau
MT

au Muu

][
q̈a
q̈u

]
=

[
Ka(q)
Ku(q)

]

+

[
Ga(q, q̇)
Gu(q, q̇)

]
+

[
Ba
0

]
F (2)

This reformulation highlights that the motion of the unactuated coordinates is excited by the motion of the actuated ones, while
is not directly affected by the external forces F:

q̈u = M−1
uu (Ku +Gu)−M−1

uu MT
auq̈a (3)

As far as the motion of the actuated coordinates is concerned, it is excited and controlled by the m actuation forces collected in F,
and can be perturbed by the motion of the unactuated coordinates. However, the use of effective controllers in the actuators, that
ensure high bandwidth and effective disturbance rejection (such as high gain controllers, feedforward or load observer schemes),
allows the actuators to get rid of the elastic dynamics of the unactuated degrees of freedom. A similar result is obtained in the
case of small inertia ratios, i.e. whenever the reflected load inertia is smaller than those of the actuators. Hence, the motion the
actuated coordinates can be interpreted as the external and independent input for the dynamics of the unactuated ones. One one
hand, it can excite the oscillating dynamics of the unactuated subsystem; on the other one, a proper design of such a motion can
lead to reduced undesired vibrations. Under these hypotheses, the problem of optimal motion planning for load vibration control
can just rely on the subsystem model in (3) in lieu of the full system model (1).

A simplified model of the actuators dynamics is instead included in the model adopted for motion planning, to account for their
finite bandwidths that do not allow tracking high frequency components of the reference trajectory. The actual acceleration of
the actuated coordinates is therefore written as a function of the reference acceleration q̈re f

a (t):

q̈a(t) = h(q̈re f
a (t)) (4)

The overall dynamic model adopted for the trajectory synthesis is therefore the following one, where the exogenous input is
q̈re f

a (t):
[

q̈u
q̈a

]
=

[
M−1

uu (Ku(q)+Gu(q, q̇))
0

]

+

[
−M−1

uu MT
au

I

]
h(q̈a) (5)

The re-formulation proposed in (5) is suitable to compute, as the output of the design algorithm, the reference profile qre f for
commanding each actuator. This approach has three paramount advantages over the use of the full dynamic model. First of all,
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it reduces the number of uncertain parameters and does not need precise models of friction forces on the actuated coordinates,
which are instead required if optimal motion planning is aimed at computing the optimal control force (i.e. an inverse dynamics
problem) to ensure no steady-state errors. The computation of the control forces to be exerted by the actuators is here demanded
to the axis control of each actuator (e.g. to its native controller). The second advantage is that smaller models are more reliable
under a computational point of view, being usually better conditioned. Finally, the optimal reference for the actuated coordinates
can be used as the position reference of the actuators even if the native position and speed controllers are adopted. Indeed, these
’closed’ proprietary control schemes cannot be usually modified in industrial mechatronic systems and they are often designed
to accept a position reference signal as the only exogenous input.

A simple and effective way to model h in (5) is to approximate it through its dominant poles. This is one of the few, if not the only,
available options when the manufacturers’ data sheet provide little or no information on the actuation and control implementation.
If the closed-loop system is nearly critically damped, the closed-loop bandwidth value can be incorporated just through the time
constant τ of the first-order linear model:

...qa(t) =−
1
τ

q̈a(t)+
1
τ

q̈re f
a (t) (6)

In practice, τ behaves also as a smoothing parameter that can be also wisely tuned to reduce the harmonic content of the reference
trajectory. The inclusion of (6) into (5) requires augmenting the state vector with q̈a as follows:

[
q̈u...qa

]
=

[
M−1

uu (Ku(q)+Gu(q, q̇))−M−1
uu AT

auq̈a

− q̈a

τ

]

+

[
0
1
τ

]
q̈re f

a (7)

This model formulation can be finally cast to fit the classical form of a set of first-order ordinary differential equations, as required
for solving the trajectory optimization problem, with u the control vector and x the state vector:

u = q̈re f
a ; x = [q̇u, q̈a, q̇a,qu,qa]

T ; ẋ = f(x, t,u); (8)

4 Variational formulation of robust trajectory planning

The formulation of the proposed robust trajectory problem applies to point-to-point motion, for which the initial and the final
configurations of the system are the obvious choice as the ’left’ and ’right’ boundary conditions [4]. Since the state trajectory is
free between the two boundary points, and hence an infinite number of trajectories connecting them can be defined, the proposed
approach aims at finding the one that minimizes a suitable cost function J:

J =
∫ t f

t0
g(x, t,u)dt (9)

The scalar function g can be chosen arbitrarily to fulfill the required goals of the trajectory design. By combining the cost function
with the two boundary conditions on x(t) and treating the system model as a constraint, the following optimization problem is
defined: 




minJ(x(t), t,u) = min

t f∫

t0

g(x, t,u)dt

sub ject to :
x(t0) = x0; x(t f ) = x f ;
ẋ(t) = f(x, t,u);

(10)

The most common way to solve such problem is to use the calculus of variations, such as the Pontryagin’s Minimum Princi-
ple (PMP) [22]. To improve the optimization problem in (10) with robustness specifications, it can be augmented with some
sensitivity functions, as suggested in the previous work of one of the Authors [19].

Let us assume that the dynamic model of the system is affected by the uncertain scalar parameter µ , and therefore eq. (8) can be
written as:

ẋ(t) = f(x, t,u,µ) (11)

If f is continuous in (x, t,µ) and is continuously differentiable with respect to x and µ for any value of (x, t,µ) in the interval
[t0, t], then the system response x(t,µ) can be evaluated as:

x(t,µ) = x(t0)+
∫ t

t0
f(s,x(s),µ)ds (12)
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Since the latter is differentiable, the partial derivative of the state with reference to the uncertain parameter µ , denoted as S(t),
can be computed as:

S(t) =
∂x(t)
∂ µ

=
∫ t

t0

[
∂ f(s,x(s,µ),µ)

∂x
∂x(s,µ)

∂ µ

+
∂ f(s,x(s,µ),µ)

∂ µ

]
ds (13)

S(t) describes how the system response is affected by the deviation of µ from its nominal value µ0. One way to obtain small
sensitivity is to enforce its amplitude at the "critical" time instants of the motion, such as the initial and final ones t0 and t f . To
do so, the motion design problem (10) should be re-cast by augmenting the dynamic model and the state vector:

ẋr(t) = fr (x,S, t,u,µ) =




f(x, t,u,µ)
∂ f(x, t,u,µ)

∂ µ




µ=µ0

(14)

xr(t) :=
[

x(t)
S(t)

]
(15)

The ’robustification’ (or ’desensitization’) procedure through the inclusion of sensitivity functions therefore leads to the definition
of the robust optimization problem of eq. (16):





minJr(xr, t,u) = min

t f∫

t0

gr(xr, t,u,µ)dt

sub ject to :
x(t0) = x0; x(t f ) = x f ;
S(t0) = 0; S(t f ) = 0;

ẋ(t) = f(x(t), t,u,µ); Ṡ(t) =
∂ f(x(t), t,u)

∂ µ
;

(16)

The optimization problem in eq. (16) can be solved using the Pontryagin’s Minimum Principle (PMP), which exploits the
Hamiltonian of the system:

H = gr +λλλ T fr (xr, t,u) (17)

The Hamiltonian function includes the vector of Lagrangian multipliers λλλ ∈ RN to constrain the solution to the system dynamics.
The three conditions imposed by the PMP are then:

ẋ =
∂H

∂λλλ
; λ̇λλ =−∂H

∂x
;

∂H

∂u
= 0; (18)

This problem is usually solved numerically through collocation [23] or shooting techniques [24]. Analytic solutions are usually
practical only for simple problems.

5 Model of the application example

The underactuated multibody system under investigation consists of two masses (m1 and m2) suspended to a translating cart
through two ropes, whose lengths are L1 and L2. The following values have been assumed: m1 = 0.192 kg, m2 = 0.201 kg,
L1 = 0.470 m, L2 = 0.391 m, τ = 0.1 s. The motion to be performed is, for all tests, a rest-to-rest displacement with 0.3 m
amplitude to be completed in 3 s. According to Fig. 1, the cart position is denoted ycart , while the angular displacement of
the two masses are defined through angles θ1 and θ2. Using u(t) = ÿre f

cart as the input of the dynamic model of the subsystem
representing the load, the dynamic model can be specified, according to the notation of (7), by the following matrices:

Ba = 1; Ka = 0; Ga = 0; (19)

Mau =

[
L1 (m1 +m2 (1+L2 cos(θ2))) m2L2 cos(θ2)

L1 cos(θ2)+L2 L2

]
(20)

Ku =

[
−g(m1 +m2)sin(θ1)+ ÿcart(m1 +m2)cos(θ1)

−gsin(θ1 +θ2)+ ÿcart cos(θ1 +θ2)

]
(21)

https://doi.org/10.3311/ECCOMASMBD2021-168

271



Figure 1: Kinematic model of the double-pendulum crane

Gu =

[
m2L2(θ̇ 2

1 + θ̇ 2
2 )sin(θ2)

−L2
1θ̇ 2

1 sin(θ2)

]
(22)

The first-order model required for trajectory planning is based on the following state vector:

x(t) =
[
ÿcart , θ̇1, θ̇2, ẏcart ,θ1,θ2,ycart

]T (23)

The ’robustification’ is made with respect to L1, which significantly affects both natural frequencies ω1 and ω2 [16]. The
augmented state vector is therefore:

xr(t) =
[
ÿcart , θ̇1, θ̇2, ẏcart ,θ1,θ2,ycart , ṡ1, ṡ2,s1,s2

]T (24)

which includes the sensitivity functions:

s1(t) =
∂θ1(t)

∂L1
; s2(t) =

∂θ2(t)
∂L1

;

ṡ1(t) =
∂ θ̇1(t)

∂L1
; ṡ2(t) =

∂ θ̇2(t)
∂L1

;
(25)

The sensitivity functions are evaluated analytically using (14) and (15). It should also be pointed out that the sensitivity function
∂ycart/∂L1 and its time derivatives are not included in the model since they are always zero, being ycart(t) independent form L1
in the model of the subsystem assumed here.

6 Load sway reduction: numerical results and comparison with input shapers

The performance evaluation of the proposed method is conducted through numerical simulation and the comparison with two
benchmark input shaping methods: the Negative Zero Vibration (NZV) shaper [25], and the Zero Vibration Derivative (ZVD)
shaper [26]. The goal of the motion planning is to design a motion profile for rest-to-rest motion with negligible residual and
transient oscillations, as well as with enhanced robustness. The requirement of zero residual vibrations for the nominal case is
obtained by imposing, in the optimization problem, null values for θ1, θ2 and for their time derivatives at final time t f . As for
the transient behaviour, it is required to reduce both the ’average’ and the peak values of the relative displacement between the
cart and the end-point mass, while ensuring reasonably small accelerations. To satisfy these requirements, function g has been
defined as follows:

g =
1
2

u2 +β exp
(
(γ (L1 sin(θ1)+L2 sin(θ1 +θ2)))

2
)

(26)

Such a definition of g trades off between the reduction of the acceleration reference signal u(t), i.e. the control effort, and the load
oscillation, which is weighed by the positive scalar weight β and by the scaling factor γ . The use of the exponential emphasizes
the peaks of the oscillation in the cost function, thus keeping them small. In practice it roughly approximates a kind of minmax
optimization problem within the frame of the classical optimal control, thus allowing for a straightforward numerical solution.
The possibility of defining different objective functions to accomplish various secondary goals, besides the usual requirement of
zero residual vibration, is an important advantage of the variational approach over input shaping. Indeed, input shaping motion
planning techniques work by convolving an arbitrary reference signal with a sequence of impulses whose number, amplitudes
and times of application depend on the natural frequency and damping of the vibrational modes to control, and on the desired
robustness. Other control objectives, such as reduction of the transient oscillations and of the control effort, should be obtained by
a clever selection of the original reference signal to be convolved with the shaper. The problem of reducing transient oscillations
and control effort is exacerbated in three cases: if the desired motion time is comparable with the period of natural oscillation,
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Table 1: Performance measurements
Test ÿmax ÿRMS

...y max
...y RMS

[m/s2] [m/s2] [m/s3] [m/s3]

NZV 0.2141 0.1299 1.6982 0.7381
ZVD 0.7067 0.3727 20.5333 6.0468

TPBVP, β = 0 0.3337 0.1840 3.7308 10.0657
TPBVP, β = 20 0.5571 0.2283 19.2325 3.6195
TPBVP, β = 50 0.7030 0.2835 25.5660 4.2066

if the desired robustness increases, and in the presence of more vibrational modes to control. Indeed, the convolution of the
unshaped reference with the shaper impulses introduces delays that are higher as the natural frequency decreases. The number
of such impulses is higher for robust shapers and for multi-mode shapers. The latter, indeed, are obtained by cascading two
or more shaping filters. Hence, the only way to retain the original motion time is to pre-compensate the delay by reducing
the time duration of the reference signal prior to shaping. This feature can be a limiting factor when the overall time delay
is comparable with the required motion time, since the unshaped motion profiles have very high accelerations that cause high
transient oscillations.

In the proposed test case, both the shapers have been fed with a displacement reference profile described by a fifth-degree
polynomial function, to ensure continuous accelerations, whose duration is set to compensate for the delay introduced by the
shapers. Since ω1 = 3.640 rad/s and ω2 = 9.017 rad/s in the nominal model (null damping is assumed), the NZV shaper
introduces a delay equal to 0.808 s, while the ZVD shaper delay is equal to 1.789 s. Hence, the total times for the unshaped
motions should be set to 2.192 s and 1.211 s, respectively. Two sample values of β , i.e. β = 0 and β = 50, have been chosen to
solve the TPVBP problem, to show how it affects the amplitude of the transient load oscillation. The scaling factor γ is set to 50 for
all tests, which has proved to produce a proper weighting factor for the sway angles θ1 and θ2. Moreover, it has been observed
that using two variable weighting factor do not provide significant performance improvements. All the reference speed and
acceleration profiles for cart are shown in Fig. 2. Figure 2 and 3 show that, for the test-case under consideration, the ZVD shaper
requires higher actuator effort than the other two methods, given that it requires the highest RMS cart acceleration (0.3727 m/s2).
The lowest actuator effort is required by the NZV shaper, which requires a RMS acceleration as low as 0.1299 m/s2. However, it
does not share the robustness sported by the two other methods, which can be judged by measuring the residual vibrations in 5.
It should be also pointed out that jerk continuity is obtained only by the proposed method: obtaining jerk continuity with input
shaping techniques requires polynomials with higher degree, and hence even higher accelerations. The load oscillations for the
three motion profiles are reported in Fig. 4 and 5. Figure 4 refers to the nominal conditions: the NZV shaper, the ZVD shaper
and the variational solution with β = 0 have similar transient load oscillation and null residual ones. In contrast, a sensible peak
load oscillation is obtained by setting β = 50, as expected, at the cost of a small increase of the cart accelerations. Figure 5
simulates a mismatch between the actual system and the model adopted for the synthesis, in which the length of the first cable,
L1, is increased by 20%. In this case, the residual load oscillation is rather small for all three robust methods, while the only
non-robust one, i.e. the NZV shaper, produces a residual peak load oscillation that is roughly one third of the transient one. The
proposed method with β = 0 and the ZVD shaper lead to very similar results, while setting β = 50 can reduce even further the
amplitude of residual vibrations. Tables 1 and 2 summarize all these results.
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Figure 2: Planned cart speed and acceleration: proposed method with β = 0 and β = 50, NZV and ZVD shaper
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Figure 3: Spectrum of planned cart acceleration: proposed method with β = 0 and β = 50, NZV and ZVD shaper
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Figure 4: Load oscillation with unperturbed plant

Table 2: Performance measurements: peak ans RMS load oscillation, measured in [mm]

Test transient transient residual residual

peak RMS peak peak, ∆L1 = 20%

NZV 27.347 17.037 0.169 8.850
ZVD 28.807 14.917 0.042 1.622

TPBVP β = 0 29.404 15.817 0.000 1.774
TPBVP β = 20 21.984 12.943 0.001 1.470
TPBVP β = 50 19.646 12.374 0.001 1.465

7 Conclusion

In this work a method for the robust design of motion profiles for underactuated multibody systems has been presented. The
method is based on the definition of a robust optimization problem constrained to the plant dynamics, which is set-up with the
aid of parametric sensitivity functions and by exploiting the Pontryagin’s Minimum Principle. The performances are assessed
by comparison with the application of NZV and ZVD shapers, showing that, for the case under consideration, the proposed
method has similar robustness properties of the widely adopted ZVD shaper, while requiring lower actuator effort and bandwidth.
Additionally, a suitable definition of the cost function adopted for the synthesis of the motion profile, allows significantly reducing
the peak transient oscillation at the cost of a minor increase of the control effort.
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ABSTRACT 

Cable-driven parallel robots are light-weight parallel robots where cables replace 

rigid actuators to move an end-effector. As a consequence, they can be characterized 

by very large workspaces, high-dynamic handlings, ease of reconfigurability and/or 

low-cost architecture. Since the driving links are flexible, the state variables of the 

robot cannot be always directly measured, thus the development of state observers is 

essential. In this work a general approach to develop a nonlinear state observer based 

on an Extended Kalman Filter is proposed and validated numerically by referring to 

a cable-suspended parallel robot. The state observer is based on a system model 

obtained converting a set of Differential Algebraic Equations into Ordinary 

Differential Equations through two different methods: the penalty formulation and 

the Udwadia-Kalaba formulation. 

Keywords: State estimation, Extended Kalman Filter, Cable-Driven Parallel Robots, 

Penalty Formulation, Udwadia-Kalaba. 

1. INTRODUCTION AND MOTIVATION 

Parallel robots (e.g., the Stewart-Gough platform) typically actuate the end-effector by driving 

rigid links, in Cable-Driven Parallel Robots (CDPRs), conversely, the end-effector is actuated by 

flexible cables. Parallel robots can be designed to achieve high stiffness at the end-effector and 

payload capacity, but the weight of the actuators and their fixed minimum and maximum lengths 

may limit considerably the feasible velocity and the workspace. Alternatively, parallel robots can 

be designed to achieve high velocity at the expenses of payload capacity, but the workspace 

limitations cannot be overcome (e.g., Delta robots). In CDPRs, instead, each cable is wound 

around a winch connected to a motor. The winch can easily provide several meters of cable not 

only enabling large workspaces, but also assuring minimal inertias, lightweight structures, easy 

reconfigurability and modularity of the system.  

Despite these advantages, the current deployment of CDPRs seems hampered mainly by the fact 

that cables are unilateral elements: they can only exert pulling forces. If they become slack, the 

end-effector cannot be made follow a prescribed trajectory or exert the required wrench to perform 

a task: in manufacturing or heavy handling, this can obviously introduce relevant performance 

and safety issues since the control of the end-effector may be lost [1]. The use of CDPRs has, 

however, already been suggested in several different operation fields, such as heavy handling, 

medical rehabilitation, rescue and home assistance, industrial manufacturing, or sport shooting 

(see for example [2] and the references therein). In the future, a wide use of CDPRs can be 

foreseen thanks to their lightweight structure (which makes them energy efficient), modularity 

and reconfigurability (which makes them flexible and easy to transport) and finally, the potentially 

high dynamics and payload capacity (which makes them effective in a wide range of industrial 

applications). The presence of flexible elements can however introduce accuracy issues as a 
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consequence of cable elasticity and sagging. Additionally, the upper and lower bounds on 

admissible cable tensions impose implementing complex planning and motion control strategies. 

These problems clearly demand developing and using accurate dynamic models for CDPRs.  

There is no single classification universally recognized for CDPRs, not even the terminology 

adopted is unified. CDPRs topologies can however be very dissimilar, and every topology 

presents advantages and drawbacks that must be considered at the design stage and when 

developing planning and control algorithms. To try to simplify the analysis the main categories 

shown in Table 1 can be used to classify CDPRs. 

Table 1. Classifications of CDPRs 

Workspace Actuation Constraints Exit-points 

Planar Under-actuated Under-constrained Fixed 

Spatial Fully-actuated Fully-constrained Reconfigurable 

 Over-actuated Redundant  

As for the workspace, a CDPR can obviously operate in a three-dimensional space or into a bi-

dimensional (planar) space. 

As for the actuation, if the end-effector of a CDPR is driven by nac active cables, depending on 

the number of degrees of freedom, ndof, of the end-effector, the CDPR can be: 

• Under-actuated  if nac < ndof [3] 

• Fully-actuated, if nac = ndof [4]; 

• Over-actuated, if nac > ndof [5]. 

Another critical feature of a CDPR is the capability of cables to react to external forces acting on 

the end-effector. Different cases can be recognized: 

• Under-constrained: there exist some directions along which cables cannot exert equilibrating 

reactions to external wrenches applied to the end-effector [6]; 

• Fully-constrained: the end-effector can maintain equilibrium against every external wrench 

(under the assumption of infinite maximum cable tension) [7]; 

• Redundant: the number of cables is greater than the minimum one making the robot fully-

constrained [8]. 

Finally, CDPRs can also present reconfiguration capabilities for their exit points (i.e., the points 

on the opposite side of the cable with respect to the points connected to the end-effector). 

Typically, the exit points are fixed, but more in general, they can follow the motion of, for 

example, drones [9], motors moving along a fixed frame [10] or even other manipulators. These 

robots are called Reconfigurable Cable-Driven Parallel Robots (RCDPRs) and are expected to 

have interesting applications also in the rescue and home assistance fields. 

A critical issue in the field of cable robotics is ensuring that cable tensions are positive. Therefore, 

proper motion planning and control should be performed by adopting advanced techniques. In the 

case of feedback control, advanced control schemes often require the knowledge of the full state 

of the system (see e.g. [11,12]), that is in contrast usually not available. To overcome this issue, 

state observers can be designed and implemented [13,14]. 

In this paper, an Extended Kalman Filter (EKF) is adopted to estimate the state variables of a 

CDPR. The dynamics of a CDPR is highly nonlinear and imposes the development of nonlinear 

state observer, such as EKFs, which are widely used in state estimation of nonlinear systems 

starting from a complete model formulated through first-order Ordinary Differential Equations 

(ODEs). A widespread approach in the literature of CDPRs is writing the Newton-Euler equations 

of motion for the end-effector under the hypothesis that cables are stiff, massless and straight, and 

often the contribution of the motor inertial properties to the overall system dynamics is neglected, 

or just considered through approximations or through non-systematic approaches. On the other 

hand, redundant coordinates are never used in dynamic models, although this choice has several 
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benefits in modelling this CDPRs (e.g. to simulate cable failures or bouncing motions), and also 

make easier the development of models including both the motors and the end-effector. The latter 

is therefore the approach investigated in this work for the design of state observers. 

Since the models implemented in the state observer need to be in ODEs representation, the 

conversion of DAEs into ODEs must be performed. This step can be carried out taking advantage 

of different formulations. In this work, two well established formulations are investigated: the 

penalty formulation [15] and the Udwadia-Kalaba formulation [16], since both the approaches 

are well suited for handling multibody systems with redundant constraints [15,17], as often occurs 

in CDPRs. 

2. DYNAMIC MODELING OF A CABLE-DRIVEN PARALLEL ROBOT 

2.1.  Differential-Algebraic Equations (DAEs) modeling technique 

Let us collect the coordinates of a CDPR into the vector of dependent coordinates pq . The 

following set of DAEs, of index 3, is obtained to model the system dynamics [18]: 

 
( )

T



+ =

=

Mq J λ f

Φ q 0
 (1) 

where ( )Φ q  is the set of n kinematic constraint equations, p pM  is the mass matrix, pf  

is the vector of the external forces, nλ   is the vector of the Lagrange multiplier and n pJ  

is the Jacobian of the constraint equations, 
 
 
 


=



Φ
J

q
. 

The CSPR studied in this work, as sketched in Figure 1, is a cable-suspended robot: a three-DOF 

suspended end-effector (modeled as a lumped mass m ) is driven by four cables winding on 

winches and actuated by motors (whose equivalent moments of inertia reflected to the motor shaft 

are ,1 ,2 ,3 ,4, , ,m m m mJ J J J ). The system is therefore overactuated, as often happens in CDPRs, since 

this configuration increases the static equilibrium workspace [19]. Vector 
T

T T =  q p θ  includes 

the absolute Cartesian positions of the end-effector 
T

p p px y z =  p  and the angular positions 

of the motors 1 2 3 4

T
     =θ . Under the assumption that cables are perfectly stiff and taut, 

and hence behave as holonomic, ideal kinematic constraints, the i-th constraint (i=1,..,4) that re-

lates the end-effector coordinates and the angular positions of the motors is 
i = − il p a  (with 

ia  the 

absolute position of the exit-point of cable i), where 
0,i i il r= +

i
l  is the i-th cable length ( 0,il  is 

the i-th cable length corresponding to 
i =0 and ri is the radius of the i-th winch). 

 
Figure 1. CSPR driven by four cables and detail of the i-th winch and exit point. 
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The i-th position constraint can therefore be expressed in the following form: 

 2 2 2
0, 0,2 2 0T T T

i i ii il l r r  = − + − − − =i i ip p p a a a  (2) 

The conversion of the set of DAEs to a set of nonlinear ODEs, both for simulating the system and 

for designing the state observer, can be done through different approaches. Three different ap-

proaches are here considered, as briefly discussed in Sections 2.2, 2.3 and 2.4. 

2.2. DAE to ODE conversion: projection matrix 

A usual way to convert a DAE model into a minimal set of ODE is using the “projection matrix 

method”, by means of the matrix (here denoted as 
( )dofp n p− 

R ) that relates the dependent 

(redundant) velocities, q , and the independent (minimal) ones, z : 

 ( )=q R q z  (3) 

taking the time-derivative of Eq. (3), ( ) ( ),= +q R q z R q q z , leads to the minimal set of ODEs 

 ( ) ( ) ( ) ( )( ),
T T

= −R q MR q z R q f MR q q z  (4) 

Eq. (4) can be expressed in the following compact form, with the obvious meaning of the symbols: 

 =Mz f  (5) 

2.3.  DAE to ODE conversion: Penalty Formulation 

To retain all the redundant coordinates in the multibody model, a formulation often used to convert 

the DAEs model to an ODEs system is using the “Penalty Formulation”, which allows directly 

simulating the time evolution of all the dependent coordinates [18]. The penalty formulation 

assumes that the Lagrange multipliers are proportional to the constraint violation at the 

configuration, velocity, and acceleration levels. In its simplest form, the following definition is 

assumed, by means of the three scalar tuning parameters  ,   and  . 

 ( )22  = + +λ Φ Φ Φ  (6) 

The choice of their values has been carried out by following the advices proposed in the literature 

(see e.g. [15]); if the model is used in the design of a state observer, they can be treated as two 

tuning parameters. Since the constrains of the system under investigation are scleronomic, the 

time-derivative of the position constraints can be expressed as 

 
( )

( )

=

= +

Φ q Jq

Φ q Jq Jq
 (7) 

and therefore, the following set of p ODEs is obtained to model the dynamics of the CDPR: 

 ( ) ( ) 22T T T   + + + + =M J J q J J J q J Φ f  (8) 

again, Eq. (8) can be written in the following compact form 

 ( ) ( ) ( )+ + =M q q C q q K q f  (9) 

2.4.  DAE to ODE conversion: Udwadia-Kalaba formulation 

A different approach to convert the DAEs into a set of ODEs retaining all the p dependent 

coordinates is through the methods exploiting the exact evaluation of the Lagrange multipliers, 

most of which are related to the Gauss’ principle of least constraint. The most famous of these 

methods is, probably, the Udwadia-Kalaba formulation [20], that holds for systems with non-
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singular mass matrix. The acceleration of the p dependent coordinates of the constrained system,

q , is obtained as the sum of the free-body (unconstrained) accelerations 
fq , 

 1
f

−=q M f  (10) 

and a perturbation due to the kinematic constraints, 
cq , that can be computed as follows: 

 ( )
1
2 †

c f

−
= −q M B Γ Jq  (11) 

matrix †B  is the pseudoinverse of B, with 

 
1
2

−
=B JM , (12) 

while Γ is due to the acceleration constraint equations: 

 
( )

2


= − − −


Jq
Γ q Jq Φ

q
 (13) 

since this formulation arises from a DAE system of index 1, position and speed constraints usually 

are not satisfied after numerical integration of the equation of motions. Therefore, the Baumgarte 

stabilization [21] is usually introduced, by leading to the following set of ODEs to be integrated: 

 ( )
1
21 † 22 f 

−−= + − − −q M f M B Γ Φ Φ Jq  (14) 

where χ and φ are Baumgarte stabilization parameters that are tuned with a trial-and-error proce-

dure. If the model is used in the design of a state observer, they could be treated as two tuning 

parameters. 

Whenever M is singular, the extension of this formulation provided in [22] could be exploited. 

3. DEVELOPMENT OF THE EXTENDED KALMAN FILTER (EKF) 

Extended Kalman Filters (EKFs) are widely used as nonlinear state observers to estimate 

unmeasured variables in multibody systems [14]. An EKF provides optimal estimates ˆ( )tx  of the 

actual state ( )
T

T Tt  
 =x q q  of a first-order system representation, by merging the prediction of 

a nominal model ( ) ( ( ), ( ))ct t t=x x uf  ( ( )tu  is the input vector), with a closed-loop correction 

inferred through the measurements retrieved from a proper set of sensors ( ) ( ( ), ( ))t g t t=y x u  

ensuring observability. The resulting closed-loop estimation is based on a prediction-correction 

scheme, that in the continuous time leads to the following form 

 ˆ ˆ( ) ( ( ), ( )) ( ( ) ( ))ct t t t t= + −x x u L y yf  (15) 

where L is the filter gain and ˆ( ) ( )t t−y y  is the output-estimation error ( ˆ( )ty  is the estimated 

output), usually denoted as the innovation. In practice, the EKF is implemented in discrete-time 

and the vectors through the discretized form of the function cf , here denoted as f : 

 
( )
( )

1 1,

,

k k k

k k k

− −




=

=

x x u

y x u

f

g
 (16) 

where k  denotes the simulation step.  

The discrete-time model f and the noisy input measurements 
ku  

are adopted for computing the 

prediction (or a-priori estimation) ( )| 1 1| 1
ˆ ˆ ,k k k k k− − −=x x uf , that is then corrected through the output 

estimation error ( )| 1
ˆ

k k k−−y y , with ( )| 1 | 1
ˆ ˆ ,k k k k k− −=y x ug , weighed through the time-varying filter 

gain |k kL , leading to the following recursive scheme: 

( )| | 1 | | 1
ˆ ˆ ˆ

k k k k k k k k k− −= + −x x L y y  (17) 

The term ( )| | 1
ˆ

k k k k k−−L y y  is a closed-loop correction, in the control theory sense, forcing the 
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estimation to track sensor measurements by compensating for noise and model uncertainty. To 

compute |k kL  at each time step, the EFK algorithm replaces the nonlinear model with its Jacobian 

matrices computed about the estimated state trajectory and uses them in the propagation of the 

noise covariance matrices [14]. 

As an example, the EKF developed with the penalty formulation is based on Eq. (9), which allows 

expressing the accelerations in the following form: 

 1 1 1( ) ( ) ( ) ( ) ( )− − −= − −q M q f M q K q M q C q q  (18)   

the following first-order representation of the system is obtained: 

 
11 −−        

        
         

−−
= +

q q f

q q 0

M 0M C 0

0 0I 0
 (19) 

where the equivalent external forces vector f  is: 

 ( )= −f f K q  (20) 

Several discretization schemes can be adopted, with different accuracy, stability and computa-

tional effort [14,18]. In this paper, with the goal of simplify the computational for boosting real 

time estimation and aware of the positive effect of the filter correction that can compensate for 

energy losses due to the numerical integration scheme, discretization is performed with a simpli-

fied method based on an approximation of the forward Euler scheme (with time-step dt ), as often 

done in control theory. The following state-dependent matrices are defined, due to the dependence 

of some submatrices on q and q  (that is omitted for clarity of representation): 

 

1

,

1

,

d

d

d k

k

d k

k

t

t

−

−

 −
 +  

 

 −
  
 

M C 0
A I

I 0

M 0
B

0 0

 (21) 

where ,d kA  and ,d kB  represent the discrete counterpart of the continuous-time matrices of Eq. 

(19). Then, the discrete-time model ( )1 ,k k k+ =x x uf  of Eq. (18) is cast as follows: 

 , 1 , 1

1 1

d k d k

k k k

− −

− −

    
    

     
= +

q q f

q q 0
A B  (22) 

and in the following compact form (that apparently resembles the one of a linear system): 

 
, 1 1 , 1 1k d k k d k k− − − −= +x A x B u  (23) 

with the obvious definitions of the state and input vectors: 

 k k

k k

  
  

   
= =

q f

q 0
x u  (24) 

By following the recursive scheme of the EKF, the covariance propagation is computed as: 

 | 1 , 1 1 , 1
ˆ T

k k d k k d k− − − −= +P A P A Q  (25) 

where Q is the covariance matrix of the of the model noise, that is in practice a tuning parameter 

that represents in an abstract way the amount of model uncertainty. Then, the filter gain is com-

puted as 

 ( )|

1

| 1 | 1
ˆ ˆ

k k

T T
k k k k

−

− −= +L P H HP H R  (26) 

where R denotes the covariance matrix of measurement noise that can be treated as a tuning pa-

rameter, and H is the Jacobian of g . Finally, the covariance propagation matrix is updated by 

setting 
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 ( )| | 1
ˆ- k kk k k−=P I L H P  (27) 

4. NUMERICAL RESULTS 

4.1. Description of the test case 

The system under investigation is a Cable-Suspended Parallel Robot (CSPR), which is a particular 

CDPR where all the cables are connected to the end-effector from the top of the frame, and 

therefore the possibility to get positive tensions in the cables is just provided by gravity. The 

CSPR analysed as the test case is sketched in Figure 2: it is made by 4 motors that actuate the 

end-effector, modeled as a point mass 3[kg]m = . The frame dimensions are 1.69 1.775 1.89 

[m] ( w l h  , in Figure 2). Therefore, it can be classified as a spatial, over-actuated, under-

constrained CDPR with fixed exit-points. The exit points are assumed to coincide with the upper 

the vertices Ai of the frame (i=1,..,4). The actuators have equal rotational moments of inertia 
2

, 5.12 4[kgm ]m iJ e= −  (i=1,..,4) (including both the motor rotor and the winch). Rigid and taut 

cables are assumed, as is often reasonable if low-frequency motions are considered. 

 

Figure 2. Basic scheme of the CSPR 

 

The actuators are supposed to be equipped by low resolution encoder measuring θ , with just 150 

pulses per revolution and operating in 4x resolution; such a choice ensures observability. The 

torques exerted by each motor is available as well, as usually supplied by commercial drivers and 

as required by the state observer. The simulator adopted to represent the “real system”, i.e. the 

system that produces the “actual” values of the state vector to be estimated by the state observer, 

has been implemented through the projection matrix method, which uses a minimal coordinate 

representation, and does not require any tuning parameter in the conversion of the DAEs to ODEs, 

as in contrast is required by both the Penalty and the Udwadia-Kalaba formulations. The “actual” 

values of θ  that are fed to the state observer are corrupted by quantization noise. Additionally, 

some errors in the mass matrices of the models employed in the observer will be considered in 

Section 4.4, to assess the observer capability of getting rid of such uncertainties by merging the 

model and the closed loop correction. Two different EKFs are tested, by adopting the Penalty and 

the Udwadia-Kalaba formulations for the model-based filter prediction. In this way, the impact of 

different multibody formulations on the estimate accuracy is evaluated. 

Besides comparing the observer outcomes with the actual state, the estimates of the end-effector 

position and velocities are made through the forward kinematics and the noisy measurements 

provided by the encoders. As for the estimation of the motor shaft speeds, it is obtained by nu-

merical derivation and by low pass filtering through a first-order filter with a 15 Hz bandwidth. 

Increasing the bandwidth does not allow properly removing high frequency noise introduced by 

derivation of the encoder signal corrupted by the coarse quantization. On the other hand, such a 

filter creates a phase lag in the estimated speeds and therefore further reducing the bandwidth 

would decrease the stability margin if such estimates are used in feedback control loops. 
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The simulated test consists of a rest-to-rest motion from point  0.8875 0.8425 0.9450iP = [m] 

to point  1.0 1.0 1.5fP = [m] through a linear path, as shown in Figure 2, by means of a 5th-

degree polynomial law of motion. 

4.2.  State observer based on penalty formulation: EKF-P 

The Cartesian coordinates of the end-effector positions ( px , py  and pz ) and velocities ( px , py  

and pz ) are shown from Figures from 3 through 5. In each figure, a comparison is shown among 

the “real system” coordinates, the estimates of the EKF based on penalty formulation (hereafter 

denoted as EKF-P) and the estimations obtained through forward kinematics. The inspection of 

the velocity estimates reveals that the use of the EKF remarkably reduces the effect of the 

quantization noise on the derivatives, compared to the kinematics estimation, without introducing 

visible delay. 

A closer look on the result can be inferred from the error plots shown in Figures 6 and 7, that are 

also summarized in Table 2 through the RMS (root mean square) values. 

 

 
Figure 3. Comparison of actual and estimated px  and px   

 

Figure 4. Comparison of actual and estimated py  and py  
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Figure 5. Comparison of actual and estimated pz  and pz  

 

Figure 6. Time-history of position estimation errors of the EKF-P 

 

Figure 7. Time-history of velocity estimation errors of the EKF-P 
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4.3. State observer based on Udwadia-Kalaba formulation: EKF-UK 

The Udwadia-Kalaba formulation has been implemented as well, leading to the observer hereafter 

denoted as EKF-UK. The results of the simulation are compared with the actual values, and the 

estimation errors are plotted in Figures 8 and 9. The results are very similar with those provided 

by the EKF-P, and an effective speed noise rejection is, again, obtained.  

Table 2 allows comparing the three different estimation approaches. While similar errors are 

obtained in term of position, the use of both the EKFs drastically reduces the speed RMS 

estimation error. 

 

Figure 8. Time-history of position estimation errors of the EKF-UK 

 

Figure 9. Time-history of velocity estimation errors of the EKF-UK 

 

Table 2. RMS errors of position and velocity estimates against “real system“ 

 EKF-P EKF-UK Forward 

kinematics 

 EKF-P EKF-UK Forward 

kinematics 
RMS

xe [m] 1.13e-4 1.08e-4 1.20e-4 
/

RMS

dx dte [m/s] 2.13e-3 2.18e-3 0.064 

RMS

ye [m] 1.32e-4 1.28e-4 1.26e-4 
/

RMS

dy dte [m/s] 2.24e-3 2.29e-3 0.059 

RMS

ze [m] 2.04e-4 1.99e-4 2.43e-4 
/

RMS

dz dte [m/s] 2.53e-3 2.55e-3 0.055 
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4.4. Estimation in the presence of model uncertainty 

A sensitivity analysis on the two EKFs has also been carried out by assuming random bounded 

perturbations of M (ranging in the interval [0, +10%]). Despite the relevant mismatch between 

the actual system model and the ones used in the state observer, a negligible increase of the 

estimation error is obtained, as shown in Table 3. 

Table 3. RMS errors of position and velocity with model mismatch 

 EKF-P EKF-UK  EKF-P EKF-UK 

RMS

xe [m] 1.13e-4 1.08e-4 
/

RMS

dx dte [m/s] 2.16e-3 2.21e-3 

RMS

ye [m] 1.30e-4 1.27e-4 
/

RMS

dy dte [m/s] 2.23e-3 2.28e-3 

RMS

ze [m] 2.04e-4 1.99e-4 
/

RMS

dz dte [m/s] 2.58e-3 2.60e-3 

 

5. CONCLUSIONS 

This work discusses the synthesis of two formulations of EKFs for the state estimations in Cable-

Driven Parallel Robot by means of some different multibody formulations. The approach is 

general and can be applied to several configurations Cable-Driven Parallel Robot. Among the two 

formulations presented to obtain ODEs from DAEs of the multibody model, the Udwadia-Kalaba 

formulation has shown some advantages due to a lower number of parameters to be tuned by the 

designer compared to the penalty formulation, that has led to a faster and simple tuning of the 

model adopted for the filter design. Overall, the performances of EKF-P and EKF-UK are 

comparable, and in both cases the computational effort wase small enough to allow for real time 

computation. 
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ABSTRACT 

This work proposes a novel Model Predictive Control (MPC) algorithm for Cable-

Driven Robots (CDRs), with a suspended configuration, to achieve good 

performances in terms of trajectory tracking of the end-effector as well as ensuring 

the positiveness of cable tensions. A two-stage controller is exploited to handle 

model nonlinearities. Firstly, a position-dependent MPC algorithm with embedded 

integrator is designed to evaluate the optimal cable tensions that are required to 

track trajectory, while considering constraints on the feasible tensions. Secondly, the 

related motor torques are evaluated taking into account the dynamics of the electric 

motor themselves, through a dedicated feedforward approach. With the goal to 

assess the proposed control algorithm, a 3-dof cable suspended spatial robot is 

considered and different trajectory tracking tasks are performed: firstly, an 

unfeasible reference is tested in order to assess the control algorithm in the worst-

case scenario and, secondly, two feasible and common trajectories are considered as 

reference laws of motion. Simulative outcomes are displayed and contour errors are 

reported to numerically evaluate the controller performances. 

Keywords: Model Predictive Control, embedded integrator, Cable-Driven Robots, 

Trajectory tracking, Tension control. 

1. INTRODUCTION 

Precise path tracking control in Cable Suspended Parallel Robots (CSPRs) is a challenging topic 

in the field of control of multibody systems, due to the positivity constraints on cable tensions, 

and for this reason it is attracting even more attention in the literature. On the one hand, from 

the open-loop point of view, trajectory planning strategies have been suggested to a-priori 

ensure positive and bounded cable tensions along given paths (e.g. [1], [2]). On the other hand, 

from the closed-loop perspective, some standard industrial controllers, such as PID controllers, 

have been often applied to this kind of robotic systems in the last decades, showing adequate 

results ([3], [4]). However, advanced control techniques have to be considered to get even better 

performances. Additionally, standard techniques do not embed the positiveness constraints on 

the cable tensions, as well as bounds on the feasible maximum tensions: since control must 

complies with these requirements, a-posteriori verification or control saturation are therefore 

usually adopted. 

In this paper, precise path tracking control in a CSPR is solved by exploiting and extending the 

idea of Model Predictive Control (MPC). Indeed, among the model-based control techniques, 

MPC has several features that make it very attractive for Cable-Driven Robots (CDRs) in 

general. The basic idea of MPC is to solve an optimal control problem defined by a cost 

function over a receding horizon and constrained by the system dynamics and by bounds on 
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some variables; these features make it attractive for motion control of multibody systems (see 

e.g. [5], [6], [7]). The optimization problem over the future control variables is solved at each 

time step by predicting the future system states and outputs. Hence, MPC provides an optimal 

sequence of the control input, in accordance with some metrics. The great advantage that makes 

MPC particularly suitable for CDRs is represented by its capability to embed constraints on 

input and output variables without requiring a-posteriori saturations. 

In the very last years, attention has been spent by a few researchers in the field of CDRs to 

apply the concepts of MPC ([8], [9], [10], [11], [12]), also showing promising results. Different 

MPC architectures are proposed by these papers, with reference of fully constrained CDRs, and 

different approaches are proposed to deal with the nonlinear dynamic behavior of the system. 

The idea of MPC has been also adopted to plan dynamic transition trajectories for a fully-

actuated three-degree-of-freedom cable suspended robot in [13]. 

In this work, the proposed MPC scheme is based on a two-step strategy that splits the system 

into two subsystems and uses them in a sequential approach. First, feedback MPC is designed 

for the subsystem made by the suspended mass by computing the positive tensions. In this way, 

the dynamic matrix of the state-space model is constant, while just the input matrix depends on 

the system pose. Nonlinearities is handled by updating the model at each time step of the control 

loop, and then assuming the input matrix as constant along the prediction interval used for the 

MPC design, thus reducing the computational burden, and allowing for real-time calculation. 

Then, a model-based approach is used to compute the reference motor torques, by exploiting the 

dynamic model of the motors, the optimal tensions computed by the MPC and the commanded 

speed and acceleration. The control assumes feedback of position and speed of the suspended 

mass and rigid cables. No tension feedback is instead adopted. To ensure effective tracking, an 

embedded integrator is here adopted in the MPC formulation (MPC-EI) by formulating the 

model through the difference variables, that easily allows including the requirement of small 

variations of the cable tensions to get smooth control actions. 

Numerical assessment of the control performances is made through a fully-actuated three-

degree-of-freedom cable-suspended robot (i.e. with a lumped end-effector), controlled by three 

cables. 

2. SYSTEM MODEL 

The studied system is depicted in Figure 1. The subsystem made by the lumped mass suspended 

through three cables is modeled through three ordinary differential equations (ODEs): 

 
3

1

.i
i

i i

m m T
=

 −
= + −  − 


p A

p g
p A

 (1) 

[ ]Tx y z=p ∈ ℝ3 is the absolute position of the end-effector, whose mass is m; iA ∈ ℝ3 

denotes the absolute position of the fixed output points of the spools ( )1,2,3i = ; 

[0 0 ]Tg= −g ∈ ℝ3 is the vector of gravity acceleration; iT  is the tension of the thi  cable. 

The dynamic model of the thi  motor is described by the following ODE: 

 ( ) ( ) ( ) ( ), , ,i i v i i m i i iJ t f t C t T t r + = −  (2) 

where i  is the motor shaft absolute rotation, iJ  indicates the moment of inertia of rotor, drum 

and idle pulleys, ,v if  is the viscous friction coefficient, ,m iC  is the motor torque and ir  

represents the drum radius. 

The kinematic constraint equation relating the rotation of the 
thi  motor and the length of the 

thi  

cable, under the assumption that cables are not slack and therefore behave as holonomic ideal 

constraints, is: 
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 0 ,i i i ir  = −  (3) 

where i  is the thi  cable length ( i i = −p A ) and 0i  is the cable length corresponding to 

0i = . 

Denoting with  1 2 3

T
  =θ ∈ ℝ3 the vector containing the absolute motor rotations, the 

resulting dynamic model, in terms of non-minimal coordinates, is defined as follows: 

 ,=T
Mq + J λ Q  (4) 

where  1 2 3, , , , ,diag J J J m m m=M ∈ ℝ6×6 is the mass matrix, 
T

T T =  q p θ ∈ ℝ6 is a set of 

six dependent coordinates containing both the absolute cartesian position of the end-effector p  

and the absolute motor rotations θ , J ∈ ℝ6×3 is the Jacobian of the position constraints, λ ∈

ℝ3×1 is the vector of the Lagrange multipliers and Q∈ ℝ6×1 contains the external forces 

(gravity forces, friction, motor torques). 

To meet the formalism of control theory, the set of DAEs obtained is converted into a minimal 

set of ODEs. By exploiting a matrix R ∈ ℝ6×3 such that 

 ,q = Rp  (5) 

then the usual form of a multibody system dynamic model is obtained: 

 ( ) ( ) .+ =T T T
R M R p R M R p R Q  (6) 

Since Eq. (6) directly relates the input torques of the electric motors (contained in vector Q) 

with the end-effector cartesian position, such a model is exploited to simulate the real system in 

a Matlab-Simulink environment, also including simplified models of the sensors and the actua-

tors. 

 

Figure 1. Scheme of the CSPR under investigation. 

3. DESIGN OF THE CONTROL SCHEME 

The dynamic model in Eq. (6) is nonlinear, due to the dependence of R  on positions. To 

simplify the control design, the synthesis of the proposed MPC scheme is based on a two-step 

strategy that splits the system into two subsystems and uses them in a sequential approach. First, 

feedback MPC is designed for the subsystem made by the suspended mass by computing the 

positive tensions to track the desired spatial path. Then, the model in Eq. (2) is adopted to 

compute the reference motor torques. Further feedforward terms compensating for gravity 

forces and inertial terms of the suspended mass could be adopted to improve; however, in this 

work they are not included in order to emphasize the effectiveness of the feedback action. 

3.1. Synthesis of MPC 
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State-Space model. The ODEs in Eq. (1) can be transformed into a first-order model through 

state vector 
T

T T =  cχ p p ∈ ℝ6, obtaining the following nonlinear continuous-time state-

space system: 

 
( )( ) ( ) ( )

,
( ) ( )

t t t

t t

 = + +


=

c c c c gc

c c c

χ A χ B p T B g

y C χ
 (7) 

where cA ∈ ℝ6×6 is the constant dynamic matrix, ( )cB p ∈ ℝ6×3 is the pose-dependent input 

matrix, gcB ∈ ℝ6×3 is the matrix that describe the relationship between the vector of gravity 

acceleration and the state vector, cC ∈ ℝ3×6 is the output matrix, and are defined as follows 

( ( )V p ∈ ℝ3×3 is the matrix containing the unitary vectors of the cables, 3I ∈ ℝ3×3 is the 

identity matrix and 30 ∈ ℝ3×3 is the null matrix): 

 ( )  3 3 3

3 3

3 3 3
3

1

, , , .m

 
−    = = = =         

c c gc c

0 0 IV(p)
A B p B C 0 I

I 0 0
0

 (8) 

The cable tensions are included in the input vector  1 2 3

T
T T T=T ∈ ℝ3, and cy ∈ ℝ3 is the 

system output. 

By discretizing the continuous-time state-space model in Eq. (7) with a sampling time sT , the 

following set of difference equations is obtained: 

 
( )( 1) ( ) ( )

,
( ) ( )

k k k

k k

 + = + +


=

d d d d gd

d d d

χ A χ B p T B g

y C χ
 (9) 

where k  denotes the generic time instant, dχ  and dy  are, respectively, the discrete state and 

output vectors, while dA ∈ ℝ6×6, ( )dB p ∈ ℝ6×3, gdB ∈ ℝ6×3, dC ∈ ℝ3×6 are the matrices of 

the discrete-time model. In this paper, to simplify the computation, discretization is performed 

through through the following approximation of the Euler method, altough other approaches can 

be adopted: 

 ( ) ( ), , , .s s sT T T= + = = =d c d c gd gc d cA I A B p B p B B C C  (10) 

As stated in the Introduction, to provide effective tracking of the spatial path, the formulation of 

MPC-EI is adopted. Therefore, by introducing the difference variables as follows: 

 ( ) ( ) ( 1) ,k k k= − −d d dΔχ χ χ  (11) 

 ( ) ( ) ( 1) ,k k k= − −ΔT T T  (12) 

and the augmented state vector χ ∈ ℝ9, 

 
( )

( ) ,
( )

k
k

k

 
=  
 

d

d

Δχ
χ

y
 (13) 

then the following augmented state-space model is obtained: 

 
( )( 1) ( ) ( )

,
( ) ( )

k k k

k k

 + = +


=

χ Aχ B p ΔT

y Cχ
 (14) 

where the matrices A∈ ℝ9×9, ( )B p ∈ ℝ9×3, C∈ ℝ3×9 assume the following meaning: 

 ( )
( )

( )
 6 3

3 6 3

3

, , .




  
= = =  
   

d d

d d d d

A 0 B p
A B p C 0 I

C A I C B p
 (15) 

While A  and C  are constant, matrix ( )B p  is position dependent. 
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Evaluation of the prediction matrices. MPC exploits the output prediction over a selected 

prediction horizon pN . Nonlinearities is handled in this work by updating matrix ( )dB p  at 

each time step, based on the system configuration. Such a matrix is then assumed constant over 

the prediction horizon for control design.  

The predicted output Y∈ ℝ3𝑁𝑝 in vectorial form is described as: 

 ( )( ) ,ik= +
cNY Fx Φ p ΔT  (16) 

where the matrices F ∈ ℝ3𝑁𝑝×9 and ( )Φ p ∈ ℝ3𝑁𝑝×3𝑁𝑐 assume the following expression: 

 ( )

( )

( ) ( )

( ) ( ) ( )

2

1 2

, .

p p p cp N N N NN − − −

  
  
  = =
  
  
     

CB p 0 0CA

CAB p CB p 0CA
F Φ p

CA B p CA B p CA B pCA

 (17) 

Once the value of the state at a generic time instant ik  is known, together with the control action 

along the control horizon, these matrices allow to achieve the value of the outputs along all the 

prediction horizon, hence describing the future system response. 

Constrained optimization problem. The following cost function J  is defined and minimized 

to solve the trajectory tracking problem: 

 ( ) ( ) ,T TJ = − − +
c c

des des

Y N ΔT NY Y R Y Y ΔT R ΔT  (18) 

where YR ∈ ℝ3𝑁𝑝×3𝑁𝑝 and ΔTR ∈ ℝ3𝑁𝑐×3𝑁𝑐 are weighting matrices, 
cNΔT ∈ ℝ3𝑁𝑐 contains the 

future control actions and 
des

Y ∈ ℝ3𝑁𝑝 is the vector of the reference trajectories along the pre-

diction horizon, described as: 

  3 3 3 ( ) ( ) ,
T

i ik k= =des des
Y I I I r F r  (19) 

where 
des

F ∈ ℝ3𝑁𝑝×3 and ( )ikr ∈ ℝ3 is the vector of reference trajectories at time step ik . It 

should be noted that the proposed formulation of MPC with embedded integrator includes in the 

cost function the variation of the cable tensions through 
cNΔT , rather than the value of the ten-

sions. This aspect is particularly useful in real case scenarios, as discussed in [12], because large 

variations of cable tensions are not physically feasible.  

Constraints on the magnitude of the cable tensions are embedded in the control synthesis 

through lower (  min 1 1 1
T

T=minT ) and upper bounds (  max 1 1 1
T

T=maxT ) on the feasible 

control input ( )kT  defined through the following element-wise inequalities, related to the min-

imum and the maximum allowable cable tensions minT  and maxT : 

 ( ) .k min maxT T T  (20) 

Lower bounds define the positiveness tension requirements; upper bounds are related to the 

maximum admissible load. Constraints are then properly translated into bounds on the differ-

ence control signal ( )kΔT  and hence on 
cNΔT . Since J  is quadratic and the constraints are 

described through linear inequalities, a standard quadratic programming problem is adopted to 

control design. In this paper, the Hildreth’s method is exploited because of its good numerical 

conditioning. 

Since the input of the MPC formulation with embedded integrator is defined by the difference 

variable ( )kΔT , the predicted optimal inputs are written in a vectorial form as follows: 
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  ( ) ( 1) ( 1) ,
T

i i i ck k k N= + + −
cNΔT ΔT ΔT ΔT  (21) 

where cN  is the control horizon and it indicates the number of samples that are considered in 

order to apply the optimal control action. Among all the values contained in the optimal solution 

cNΔT , only the first 3 terms (which represent the entries of ( )ikΔT  in Eq. (21)) are considered 

while the remaining ones are discarded, in accordance with the Receding Horizon Principle and 

therefore making the MPC algorithm a closed-loop controller. 

3.2. Computation of the motor torques 

Once the optimal tensions MPC

iT  are computed by the proposed MPC, the motor torques ,m iC  

are achieved through a feedforward approach by exploiting the inverse-dynamic model of each 

actuator (see Eq. (2)), with nominal inertia ( ˆ
iJ ) and viscous friction coefficients (

,
ˆ
v if ), and 

considering acceleration and speed references ( )ref

i t  and ( )ref

i t  (obtained through inverse 

kinematics of the load reference trajectory). Therefore, considering the thi  electric motor, its 

commanded torque is evaluated as follows: 

 , ,
ˆˆ ( ) ( ) ( )ref ref MPC

m i i i v i i i iC J t f t rT t = + +  (22) 

4. NUMERICAL RESULTS 

4.1. System description 

The parameters of the studied system are reported in Table 1. In the practical implementation, 

since MPC is a model-based control technique, it is assumed that accurate tuning of the model 

parameters is available, by exploiting any of the well-established techniques for model identifi-

cation in multibody systems (see e.g. [14]), or specifically developed for cable robots (see e.g. 

[15]). Three motion references have been simulated to highlight the paramount features of the 

proposed control scheme. A simulation environment has been developed through Matlab-

Simulink. 

Table 1. System parameters 

Parameter Description Value 

,1 ,2 ,3, ,m m mJ J J  Motor inertias 
5 22.6 10 kgm−      

,1 ,2 ,3, ,v v vf f f  Motor viscous friction coefficients  35 10 Nms rad−  

1 2 3, ,r r r  Radius of the pulleys  0.036 m  

m  Mass of the suspended load  2.94 kg  

min max;T T  Minimum and maximum tensions  5 ; 100 N  

sT  Sampling time  32 10 s−  

;c pN N  Control and prediction horizons 1 ; 60  

;Y ΔTR R  Weighting matrices 
3

180 3; 1 10−I I  

4.2. Test cases 

4.2.1. Test 1: point-to-point motion with an unfeasible trajectory.  

The first trajectory is made by a descending step reference for the z-axis, while keeping the 

references on x-axis and y-axis equal to the initial conditions. This trajectory is unfeasible be-
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cause it would require negative infinite acceleration along the z-axis as well as negative tensions 

and hence would lead to slack cables. The presence of constraints on the feasible tensions in the 

control synthesis allows tracking the reference as fast as possible, while ensuring feasible ten-

sions. The temporal tracking response in the z-axis is displayed in Figure 2, while Figure 3 

shows the commanded cable tensions and corroborate the correctness of the proposed approach 

in handling constraints. 

 
Figure 2. Temporal tracking response with step reference. 

 

Figure 3. Cable tensions with step reference. 

4.2.2. Test 2: point-to-point motion with a feasible trajectory.  

To verify the control performance in the presence of a feasible trajectory, a 5 th-degree polyno-

mial motion law has been designed for a rest-to-rest motion lasting 3 seconds, to track a spatial 

straight line. Additional interval times of 1 second are also considered both at the beginning and 

at the end, in order to evaluate the controller in steady-state conditions. The spatial path tracking 

response is reported in Figure 4, together with its contour error in order to assess the perfor-

mance of the proposed control algorithm. The control effectiveness is clearly proven, as the 

RMS value of the contour error is just  55.6 10 m− . The error could be further reduced through 

finer tuning of the controller, which is however beyond the paper goals. The optimal cable ten-

sions computed by the MPC are reported in Figure 5. 
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Figure 4. 3D-cartesian trajectory tracking response with 5th-degree polynomial reference (on the 

left) and its contour error (on the right). 

 

Figure 5. Cable tensions with 5th-degree polynomial reference. 

4.2.3. Test 3: circular path.  

The last test consists of a circular planar reference path to be tracked by the end-effector, con-

sidering an overall time interval of 5 seconds. The timing law adopted to parametrize the path is 

a 5th-degree polynomial, and the reference path goes outside the static workspace, which is a 

condition rarely considered in the literature, that makes the test case severe. In this test case a 

classical MPC formulation, without embedded integrator, is also tested (which is an easier and 

more common algorithm) in order to compare it with the MPC-EI; the same design parameters 

of Table 1 are used for both controllers, with the focus to make a fair comparison. Only the pa-

rameter ΔTR  is assumed with a different value; indeed, to avoid the instability of the classical 

MPC algorithm while keeping the same prediction and control horizons, its value is set one 

hundred times smaller and therefore equals to 
5

31 10− I . The planar tracking responses are 

displayed in Figure 6 for both controllers, together with their contour errors to have a clearer 

image of the performances. It should be noted that the classical MPC formulation, without em-

bedded integrator, leads to a worse path tracking characterized by a huge contour error and a 

non-zero steady-state error. More precisely, the MPC algorithm without embedded integrator 
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has an RMS contour error equals to  310.1 10 m− , while the MPC-EI formulation provides a 

contour error whose RMS value is equal to  48.3 10 m− . Since the contour error results to be 

lowered by one order of magnitude, these results corroborates the effectiveness of the presented 

controller. Finally, the optimal cable tensions commanded by the MPC-EI are shown in Figure 

7, underlying that this controller is capable to increase the overall performance in terms of path 

tracking, ensuring at the same time that the boundaries on cable tensions are verified. 

  

Figure 6. Comparison between Classical MPC and MPC-EI: 2D-cartesian trajectory tracking 

responses with circular reference (on the left) and relative contour errors (on the right). 

 

Figure 7. MPC-EI cable tensions with circular reference. 

5. CONCLUSIONS 

This paper proposes the preliminary results on a new Model Predictive Control algorithm 

tailored for path tracking control in Cable-Driven Robots. Control is performed by two 

sequential actions, that have been conceived to handle the highly nonlinear differential 

equations form the motor torque to the end-effector position. The first one is responsible for the 

evaluation of the optimal cable tensions while the second one consists in computing the required 

motor torques.By means of the implementation of a constrained time-varying MPC, the first 

step computes positive and bounded cable tensions, while minimizing a proper performance 
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index that includes the tracking error and the tension variation. The use of an embedded 

integrator has been proposed to ensure accurate path tracking, in particular at steady-state 

conditions. The second action of the control scheme, on the other hand, permits to evaluate the 

necessary motor torques through a feedforward approach. 

Three numerical test-cases have been proposed through a three-cable spatial robot, showing 

good performances in path tracking tasks and ensuring the positiveness of the cable tensions. To 

better understand the advantages coming from the MPC-EI, this latter has been also compared 

with a classical MPC formulation, without embedded integrator, which represents an easier and 

more common algorithm. By looking at the contour error, it has been noticed that MPC-EI has 

been capable to reduce it by one order of magnitude, ensuring at the same time the verification 

of the boundaries on all cable tensions and, therefore, confirming its supremacy. 
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ABSTRACT

Tracking sequences of predefined open and closed paths is of crucial interest for ap-
plications like laser cutting and similar production processes. These distinct paths
are connected by non-productive, four times continuously differentiable trajectories,
which also account for the overall process time. Heuristic methods are applied in or-
der to find a proper sequencing of the open and closed path and thereby minimize the
overall process time subject to constraints given by the system limits. To this end the
exact traversing times of the non-productive linking trajectories are computed, which
also have to be time optimal subject to the system limits. Finally two heuristic al-
gorithms are presented and compared with respect to solution quality and calculation
time using randomly generated problems.

Keywords: Path Planning, Heuristic Scheduling, Traveling Salesman Problem,
Laser Cutting Machine.

1 INTRODUCTION
For laser cutting applications a cutting job consists of predefined open and closed paths. Since
theses paths are often not connected the question arises, how these paths should be sorted in order
to minimize overall process time. Numerous contributions, concerning this topic, can be found
in the literature, as indicated by the review paper [1], where 72 contributions are collected and
compared with respect to the used methods and algorithms.

Although a more general approach would be conceivable, this work focuses on paths on the 2D
plane and gantry like robotic systems as shown in figure 1. These systems are subject to restrictions
like maximum velocity, acceleration and jerk for each axis respectively. Furthermore there are
process specific constraints. In case of the laser cutting process the maximum velocity tangentially
to the path depends on the material which has to be cut and in order to ensure a clean cut the
velocity at the beginning and at the end of each path has to be zero. Subject to these constraints
a time optimal path tracking solution for each path can be found and the optimal partial solutions
can be connected by time optimal trajectories along straight lines. With an increasing number
of paths to track the impact of the non-productive traversing time introduced by these links on
the overall process time is getting dominant if the sequencing is not handled properly. To this
end two heuristic approaches are provided, tested and compared with respect to an integer linear
programming algorithm. The optimal traversing time of the non-productive linking trajectories
depends non-linearly either on the end points as well as the system limits. In contrast to e.g. [2],
where a piecewise linear function is introduce approximating this non-linear behaviour, in this
work analytic, non-linear expressions are derived and used for the optimal traversing time.
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y-axis
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Figure 1. Gantry laser cutting machine

2 PROBLEM DEFINITION AND COMBINATORIAL BACKGROUND
Before setting up the problem definition some graph theoretical terminology should be introduced,
which is used through out the following sections. An undirected graph is defined by a set of nodes
N = {ni | 0 ≤ i < N}, where N denotes the number of nodes, and a set of edges E ⊆ {ei, j | 0 ≤
i < N, i < j < N} connecting some or all of these nodes, where edge ei, j is equivalent to e j,i. An
undirected graph can be

• weighted, if each edge ei, j is associated with a weight wi, j.

• simple, if each edge ei, j is unique in E.

• an undirected multigraph, if edges are allowed to be not unique in E.

• connected, if each pair of nodes can be connected by a sequence of edges in E

• complete, if each pair of nodes is connected by exactly one edge.

A cycle in the graph is a sequence of edges, which starts and ends at the same node. Special cycles
are Eulerian cycles, which contain every edge of a graph once, and Hamilton cycles, which start
and end at the same node and traverse every other node of the graph exactly once. A Hamilton
cycle is also called a tour of the graph.

A spanning tree of a connected graph is a subset of edges, which does not contain cycles and
contains all nodes. Consequently the minimum spanning tree of a connected, weighted graph is
the spanning tree with the minimum total edge weight.

Finding the tour with the minimum total edge weight in a complete, undirected, weighted graph
is equivalent to solving the corresponding symmetric traveling salesman problem. This very well
know NP-hard combinatorial problem is assumed to be not solvable in polynomial time. The
number of all tours in such a graph can be stated by NT = (N−1)!

2 , which grows extremely fast
by an increasing number of nodes. Therefore a brute force approach can only be suitable for
a very low number of nodes. Although there exist many exact algorithms to solve a traveling
salesman problem, like branch-and-cut or branch-and-bound, an exact solution is getting more
and more impractical with an increasing number of nodes. Actually for most applications a good
approximation of the optimal solution would suffice. This can be achieved efficiently by heuristic
algorithms.

A cutting job, which has to be processed by the laser cutting machine, consists of several cutting
paths, denoted ci, with 1 ≤ i ≤ Nc. Each of these paths ci is defined by two points in the 2D plane,
a start point rs,i and an end point re,i. These two points are connected by a path, for which it
is assumed, that a time optimal trajectory, with respect to the machine and process constraints,
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is known. Additionally a job should start and end at a defined idle position given by r0. Since
the trajectories for each cutting path are already assumed to be optimal, the overall processing
time can be reduced by finding a processing sequence of these paths, which minimizes the total
non-productive traversing time between the consecutive paths. To this end a complete, undirected,
weighted graph of the start and end points of the cutting paths is constructed with edge weights ac-
cording the traversing time between these points. The optimal solution of the problem corresponds
then to the solution of the symmetric traveling salesman problem given by this graph.

The cutting paths ci can be closed, i.e. rs,i = re,i, or open, i.e. rs,i ̸= re,i. Without loss of generality
it is assumed, that the first Ncc paths are closed and the remaining Nco paths are open, which means
that the conditions

rs,i = re,i for 1 ≤ i ≤ Ncc (1)

rs,i ̸= re,i for Ncc < i ≤ Nc = Ncc +Nco (2)

are fulfilled. This can be always obtained by reordering indices. Since the start and end point
coincide, closed paths can be represented by a single node in the graph. Based on this, the N =
Ncc +2Nco +1 nodes of the graph can be associated with the start (and end) points of the cutting
paths as well as the idle position according to the mapping

rn(ni) =





r0 for i = 0
rs,i for 1 ≤ i ≤ Ncc

rs, j with j = Ncc +(i−Ncc +1)/2 for Ncc < i < N ∧ (i−Ncc) is odd
re, j with j = Ncc +(i−Ncc)/2 for Ncc < i < N ∧ (i−Ncc) is even

. (3)

With the definition of the edge weights, provided in the following section, the graph is fully defined
and the traveling salesman problem can be solved. But if open cutting paths are present, i.e.
Nco > 0, each algorithm used has to enforce, that these paths are actually traversed in the solution.

3 OBJECTIVE FUNCTION
Regardless of whether the problem is solved by an exact algorithm or by a heuristic, the objective
is to find the tour with the minimum total edge weight. In order to compute the edge weights,
a special metric is introduced. Since the overall goal is to achieve a time optimal solution all
the considered links connecting two points on the 2D plane have to be time optimal on their
own. Therefore the distance between two arbitrary points can be expressed by the minimum time
needed to traverse a straight line between these two points satisfying the constraints of the robotic
system. The resulting distance measure satisfies the triangle inequality as well as the remaining
requirements of a metric.

The transition from one point in the 2D plane rn(ni) = ri =
[
xi yi

]⊺ to another point rn(n j) =

r j =
[
x j y j

]⊺, corresponding to the nodes ni and n j respectively, is performed according to a time
optimal sin2-jerk trajectory. This trajectory has the property, that it is continuously differentiable
until the fourth derivative, which is beneficial, since the excitation of vibrations is reduced. An-
other advantage of this trajectory is, that the minimum traversing time between two points can be
calculated analytically with respect to maximum velocity, acceleration and jerk. These maximum
values can be defined for the each axis individually by vmax,k, amax,k and jmax,k with k ∈ {x,y}.
Additionally the maximum tangential velocity, acceleration and jerk can be constrained by vmax,t ,
amax,t and jmax,t respectively. In order to calculate the minimum traversing time the distances
∆xi, j = x j − xi and ∆yi, j = y j − yi along each axis are needed, which can be used to calculate the
Euclidean distance

∆di, j =
√

∆xi, j
2 +∆yi, j

2 (4)
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between the two points. With these distance measures the actual maximum values for a straight
path between the points ri and r j can be stated by

vmax,i, j = min
(

vmax,x
∆di, j

|∆xi, j|
,vmax,y

∆di, j

|∆yi, j|
,vmax,t

)
, (5)

amax,i, j = min
(

amax,x
∆di, j

|∆xi, j|
,amax,y

∆di, j

|∆yi, j|
,amax,t

)
, (6)

jmax,i, j = min
(

jmax,x
∆di, j

|∆xi, j|
, jmax,y

∆di, j

|∆yi, j|
, jmax,t

)
. (7)

The trajectory over time t can then be defined by

ri, j(t) = ri +
r j − ri

∆di, j
ξ (t,∆di, j,vmax,i, j,amax,i, j, jmax,i, j) (8)

with the function ξ (t,∆d,vmax,amax, jmax) satisfying the properties

ξ (0,∆d,vmax,amax, jmax) = 0, (9)

ξ (tE ,∆d,vmax,amax, jmax) = ∆d, (10)

0 ≤ ξ̇ (t,∆d,vmax,amax, jmax)≤ vmax, (11)

|ξ̈ (t,∆d,vmax,amax, jmax)| ≤ amax, (12)

|
...
ξ (t,∆d,vmax,amax, jmax)| ≤ jmax. (13)

By partitioning the traversing time tE in 7 phases by interleaving 4 jerk phases of length t j with 3
jerk free phases of lengths ta, tv and ta corresponding to phases of constant acceleration respectively
velocity, ξ (t) and its derivatives (omitting the last arguments for brevity) can be stated by

...
ξ (t) =





0 t < 0

jmax sin
(

πt
t j

)2
0 ≤ t < t j

0 t j ≤ t < t j + ta

− jmax sin
(

π(t−t j−ta)
t j

)2
t j + ta ≤ t < 2t j + ta

0 2t j + ta ≤ t ≤ tE
2...

ξ (tE − t) tE
2 < t

, (14)

ξ̈ (t) =
∫ t

0

...
ξ (τ)dτ, ξ̇ (t) =

∫ t

0
ξ̈ (τ)dτ, ξ (t) =

∫ t

0
ξ̇ (τ)dτ (15)

with tE = 4t j +2ta + tv, t j = 0 if ∆d = 0, t j > 0 if ∆d > 0, ta ≥ 0 and tv ≥ 0. The maximum values
of ξ̈ (t) and ξ̇ (t) as well as the final value ξ (tE) can be expressed in terms of

max
t
(|ξ̈ (t)|) = ξ̈ (t j) =

jmaxt j

2
= â ≤ amax, (16)

max
t
(|ξ̇ (t)|) = ξ̇ (2t j + ta) = âta +

2â2

jmax
= v̂ ≤ vmax, (17)

ξ (tE) = âta2 +
6â2ta
jmax

+ v̂tv +
8â3

jmax
2 = ∆d. (18)

In order to get a time optimal trajectory, four cases have to be distinguished, which have the
following solutions:
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• ta = 0∧ â ≤ amax ∧ tv = 0∧ v̂ ≤ vmax

â =
1
2

3
√

jmax
2∆d v̂ =

1
2

3
√

jmax∆d2 t j =
3

√
∆d
jmax

(19)

∆d ≤
√

8vmax3

jmax
∧ vmax ≤

2amax
2

jmax
∨∆d ≤ 8amax

3

jmax
2 ∧ vmax >

2amax
2

jmax
(20)

• ta = 0∧ â ≤ amax ∧ tv > 0∧ v̂ = vmax

â =

√
jmaxvmax

2
tv =

∆d
vmax

−
√

8vmax

jmax
t j =

√
2vmax

jmax
(21)

∆d >

√
8vmax3

jmax
∧ vmax ≤

2amax
2

jmax
(22)

• ta > 0∧ â = amax ∧ tv = 0∧ v̂ ≤ vmax

v̂ =

√
amax4

jmax
2 +amax∆d − amax

2

jmax
ta =

√
amax2

jmax
2 +

∆d
amax

− 3amax

jmax
t j =

2amax

jmax
(23)

8amax
3

jmax
2 < ∆d ≤ 2vmaxamax

jmax
+

vmax
2

amax
=⇒ vmax >

2amax
2

jmax
(24)

• ta > 0∧ â = amax ∧ tv > 0∧ v̂ = vmax

ta =
vmax

amax
− 2amax

jmax
tv =

∆d
vmax

− vmax

amax
− 2amax

jmax
t j =

2amax

jmax
(25)

∆d >
2vmaxamax

jmax
+

vmax
2

amax
∧ vmax >

2amax
2

jmax
(26)

The terminal time of ξ (t,∆d,vmax,amax, jmax) can then be stated by

tE(∆d,vmax,amax, jmax) =



4 3
√

∆d
jmax

∆d ≤
√

8vmax3

jmax
∧∆d ≤ 8amax

3

jmax
2√

8vmax
jmax

+ ∆d
vmax

∆d >
√

8vmax3

jmax
∧ vmax ≤ 2amax

2

jmax

2
(

amax
jmax

+
√

amax2

jmax
2 +

∆d
amax

)
8amax

3

jmax
2 < ∆d ≤ 2vmaxamax

jmax
+ vmax

2

amax

2amax
jmax

+ vmax
amax

+ ∆d
vmax

∆d > 2vmaxamax
jmax

+ vmax
2

amax
∧ vmax >

2amax
2

jmax

. (27)

Finally the minimum traversing time between the points ri and r j, which defines the edge weight
wi, j between the nodes ni and n j, is

wi, j = tE(∆di, j,vmax,i, j,amax,i, j, jmax,i, j). (28)

4 CHRISTOFIDES ALGORITHM
The Christofides algorithm [3] is a construction heuristic based on the minimum spanning tree of
the complete, undirected, weighted graph. The main steps of the algorithm are as follows:

• Build the minimum spanning tree
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• Select all nodes of the minimum spanning tree with an odd degree

• Find a minimum-weight perfect matching of the complete subgraph of these nodes

• Combine the edges from the perfect matching with the minimum spanning tree

• Form an Eulerian cycle on the result

• Convert the Eulerian cycle to a Hamiltonian circle (tour) by skipping all repeating nodes

The total sum of the edge weights (tour length) of the so gained tour over all nodes of the graph is
guaranteed to be within 1 and 1.5 times the length of the optimal tour, if the edge weights satisfy
the triangle inequality.

As shown in [4] this algorithm can also be used to obtain a near optimal solution for problems
with Nco > 0, i.e. open paths are present. In order to guarantee that an open path c j with j > Ncc

with the corresponding nodes ni and ni+1, according to start and end point thereof, is traversed, the
weight wi,i+1 has to be modified according to

wi,i+1 = min(min{wi,k | k > i+1},min{wk,i+1 | k < i}). (29)

This ensures, that the edge corresponding to an open cutting path is selected, when building the
minimum spanning tree. Additionally it has to be ensured, that these edges are not skipped when
converting the Eulerian cycle to the Hamilton cycle. As stated in [4] this procedure leads to the
downside that the triangle inequality is no longer satisfied and the major benefit, which is the upper
bound of 1.5 times of the optimal tour length, does no longer apply.

The algorithm used for solving the examples is implemented in Python based on the packages
numpy and networkx. In order to speed up the calculation time of the minimum-weight perfect
matching a heuristic approach is chosen for problems with N ≥ 1000. Therefore the minimum-
weight perfect matching is not performed on the complete subgraph of the odd degree nodes, but
on a minimum-weight sparse subgraph thereof, with a minimum degree of the occurring nodes of
five.

5 LIN-KERNIGHAN-HELSGAUN (LKH) ALGORITHM FOR PROBLEMS WITH OPEN
AND CLOSED PATH

In contrast to the Christofides algorithm, which terminates once a feasible solution is found, the
Lin-Kernighan-Helsgaun algorithm [5], which is based on the algorithm of Lin-Kernighan [6], is
an iteratively improving heuristic. After a preprocessing phase, essentially based on an extended
minimum spanning tree, a suboptimal initial solution is generated with any suitable and fast con-
struction heuristic. This initial solution is then improved by so called k-opt exchanges, which
means that in every iteration step, k edges of the current tour are replaced by k other edges, in
order to improve the tour. Special heuristic rules are applied to decide which edges should be
removed and which edges should be used instead. This drastically reduces the according search
spaces and consequently also the calculation time. To decrease the calculation time even further
the k-opt exchanges are constructed sequentially from k = 2 to k = 5. Once an improvement is
found the exchange is applied immediately and the algorithm proceeds with the next iteration step.
The algorithm terminates when no further improvement of the tour length with respect to k ≤ 5
and the applied heuristic rules can be found.

This algorithm can be applied straightforwardly to a problem with solely closed paths, i.e. prob-
lems with Ncc > 0 and Nco = 0. In order to use this algorithm with open and closed paths, i.e.
problems with Ncc ≥ 0 and Nco > 0, some modifications in the problem setup and the algorithm
are necessary.

In the preprocessing phase of the algorithm constructive sets are associated to each node, which
are used to decide which edge should be added in the iteration phase. With open cutting paths
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present, it has to be ensured, that the according edges are part of these sets. Additionally when
constructing the initial tour, it has to be ensured, that these edges are part of the initial tour. In
the iterative improving phase two modifications of the algorithm are applied, in order to ensure
the validity of the solution tour and to reduce the calculation time. Firstly edges according to the
open cutting paths are never removed from the current solution. Secondly each time an edge ei, j

is considered to be added to the current solution, it is determined whether the start or end node ni

or n j of this edge is either start or end node of an open cutting path. If so, it is checked whether
flipping the sequential order of the two end points of the affected open path may further improve
the current solution. Figure 2 shows the edges (dashed lines), which are taken into account, when
any edge connecting the two open paths in the figure is considered to be added to the current
solution, and the edges (fully drawn lines), which are actually chosen. The algorithm used for
solving the examples is implemented in C++17 based on the standard library.

Figure 2. Selection of actually added edges in case of open paths

6 INTEGER LINEAR PROGRAMMING
In order to solve the traveling salesman problem by integer linear programming each edge ei, j is
associated with a boolean variable êi, j ∈ {0,1}, which indicates whether the respective edge is part
of the solution tour or not. According to the work of [7] the optimization problem can be stated by

min
êi, j

N−1

∑
i=0

N−1

∑
j=i+1

êi, jwi, j (30)

s.t.
N−1

∑
j=i+1

êi, j +
N−1

∑
j=i+1

ê j,i = 2 0 ≤ i < N (31)

êi,i+1 = 1 i ∈ {Ncc +1,Ncc +3, . . . ,N −2} (32)

By the first constraint it is enforced, that each node is part of the solution and has a degree of two,
which means it has one incoming and one outgoing edge. The second constraint (32) ensures,
that the edges associated with the open cutting paths are part of the solution edges. Solving this
problem does not necessarily result in a valid tour, since also a number of cycles containing all
nodes fulfil the constraints. Therefore additional constraints, which eliminate cycles have to be
added. The number of this constraints grows exponentially with an increasing number of nodes.
Therefore the optimization problem is solved iteratively and in every iteration constraints

∑
(i, j)∈Ck)

êi, j ≤ |Ck|−1 (33)

for each occurring cycle Ck = {(i1, j1),(i2, j2), . . . ,(iNk , jNk)} are added with Nk = |Ck| according
to the set of Nk edges {ei1, j1 ,ei2, j2 , . . . ,eiNk , jNk

} forming the cycle. The algorithm used for solving
the examples is implemented in Matlab based on intlinprog(. . .).

7 EXAMPLES
The examples shown in this section are created randomly based on the Voronoi cells of randomly
distributed points in the 2D plane. Each problem consist of Ncc closed and Nco open cutting
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paths. The constraining maximum values use for calculating the edge weights are stated in table 1.
Table 2 compares the total edge weight of the solution tours, excluded the weights of the edges
according to the open cutting paths, acquired by the different algorithms. Since all the provided
algorithms are implemented in different frameworks, comparing the actual calculation time is not
really meaningful. Nonetheless the approximate calculation times are stated in table 3 for reference
purpose. For the problem sizes of N > 101 the integer linear programming approach did not
terminate in a reasonable time span, which is noted by a − in the tables. Graphical representations
are provided for the problems of sizes N ≤ 101, as can be seen in the figures 3 to 10. The figures
for the problems with a higher number of nodes are omitted, since the graphical representation is
getting less and less expressive.

As can be seen in table 3 the Christofides heuristic and LKH heuristic perform equally well for
small problem sizes, regarding solution quality as well as calculation time. But with an increas-
ing number of nodes the LKH outperforms the Christofides heuristic in both criteria, especially
regarding the calculation time. Additionally it has to be noted, that for the Christofides heuristic
and problems with N ≥ 1000, a heuristic approach has to be used for the minimum-weight perfect
matching, in order to get a result in reasonable time. Remarkable is the fact, that for all the exam-
ples, for which an optimal solution has been found by the integer linear programming algorithm,
the LKH heuristic leads to the exact same solution.

Table 1. Examples: Used maximum values according to the system limits

vmax amax jmax
ms−1 ms−2 ms−3

x-axis 1 5 50
y-axis 1 5 50

tangentially 1.2 ∞ ∞

Table 2. Examples: Total edge weight of solution tour for different algorithms

Problem sizes Total edge weight of solution tour in s
N Ncc Nco Unsorted LKH Christofides ILP

31 25 5 62.470 23.931 24.282 23.931
101 70 30 163.539 58.215 60.881 58.215
301 250 50 506.788 145.305 151.549 −

1001 700 300 1675.920 378.299 399.266 −
3001 2500 500 4975.530 976.974 1020.000 −

Table 3. Examples: Approximate calculation time for different algorithms

Problem sizes Approximate calculation time in s
N Ncc Nco Edge Weights LKH Christofides ILP

31 25 5 3.5×10−2 3.8×10−1 4.1×10−1 2.9
101 70 30 4.3×10−2 1.9 2.3 11.2
301 250 50 1.0×10−1 3.6 27.6 −

1001 700 300 4.8×10−1 11.7 28.5 −
3001 2500 500 1.0 19.9 213 −
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Figure 3. Example N = 31: Random Tour
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Figure 4. Example N = 31: Solution LKH
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Figure 5. Example N = 31: Solution Christofides
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Figure 6. Example N = 31: Solution ILP

https://doi.org/10.3311/ECCOMASMBD2021-138

307



0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

Figure 7. Example N = 101: Random Tour
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Figure 8. Example N = 101: Solution LKH
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Figure 9. Example N = 101: Solution Christofides
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Figure 10. Example N = 101: Solution ILP
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8 CONCLUSION
It has been shown, that the Christofides heuristic as well as the LKH heuristic can be applied for
sequencing open and closed cutting paths, while minimizing the overall traversing time of the non-
productive trajectories, connecting these paths. This has been achieved by minor extensions on the
respective algorithms and by introducing a special metric for calculating the edge weights, which
models the traversing time of an time optimal sin2-jerk trajectory along a straight path in the 2D
plane.

Finally the Christofides heuristic, the LKH heuristic and an integer linear programming algorithm
are compared, regarding solution quality and calculation time using random generated examples
of different problem sizes. The results of these examples indicate that both the Christofides and
the LKH heuristic are capable of finding good approximations of the optimal tour for small prob-
lem sizes and that the LKH heuristic performs better, especially regarding calculation time, for
problems with a higher number of nodes.
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ABSTRACT

In this paper, we describe an approach for the model identification of the humanoid
robot REEM-C. In contrast to previous work, we do not attempt to determine all dy-
namic parameters simultaneously. It is not clear whether such approaches can lead to
redundancies in the optimization problem. We deliberately restrict ourselves to a very
precise determination of the center-of-mass (COM) and the mass of the individual
rigid bodies. As a result, we do not use Persistent Exciting (PE) trajectories and per-
form the identification based on motion capture and force plate measurements of 172
static poses. This results in more accurate experimental data and allows a more precise
update of static parameters by means of an optimization problem. The inertial param-
eters are not updated and have to be adjusted using classical approaches, but based on
the already improved static parameters. We report the performance of optimization by
comparing the distance of the ground-projected-center-of-mass (GCOM) against the
measured GCOM from the model information of the original and optimized model for
each static pose. The improvement of the optimized model is furthermore reflected
by means of a recorded dynamic squat motion and by analyzing the residual torques
and forces acting at the floating base of the robot.

Keywords: multibody dynamics, humanoid robot, inertial parameters, model identi-
fication.

1 INTRODUCTION
Humanoid robots are on the advance with capabilities that make them suitable for use outside of
laboratory environments. Their application in collaboration with humans or for tasks that are too
dangerous or monotonous for humans is thus within reach [1, 2, 3]. Due to their anthropomorphic
structure, they have advantages in a complex working environment made by humans for humans
[4] and their bipedal locomotion makes it possible to master more challenging terrain [5]. This
advantage comes at a cost, as an upright posture and locomotion is not statically stable for most
configurations, as is the case for multi-legged robots. Thus, many motion sequences push the robot
to its limits in order to perform complex tasks while maintaining static and dynamic stability [6].

There are many different approaches to generating motion sequences for humanoids, and those
that reach a robot’s limits exploit the full dynamic properties described in the robot’s model [7].
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For the challenging task of developing whole-body motions on complex multibody systems such
as humanoid robots, knowledge of the exact dynamic properties of the mechanical system are
required. This is further complicated by inaccuracies in the dynamic model parameters for which
we can distinguish between four different categories:

1. The geometry or kinematic structure of the robot, which is usually generated from the un-
derlying CAD files and is very precise.

2. The mass and centers-of-masses of all rigid bodies involved, which is also exported from
CAD, but often only reflects a fraction of the individual (electrical) components within the
rigid body.

3. The moments of inertia, which are also derived from the CAD. A uniform density distribu-
tion within the individual rigid bodies is often assumed. For this reason, the moments of
inertia are also only an approximation of the body with individual components of different
unknown densities.

4. Limitations of the robot in terms of joint angles, torques or velocity. These can be deter-
mined fairly accurately based on the motor specification.

As category 2 and 3 are mostly mere, flawed approximations of the actual parameters, much at-
tention is paid to model identification using multibody dynamics, initially for manipulators in the
1980’s [8, 9, 10]. This method was extended to be applicable to humans [11] and humanoid robots
[12, 13]. Subsequent work further extends this method by also including joint torque information
of the actuated joints [14]. Each method requires a set of trajectories, also called Persistent Ex-
citing (PE) trajectories with the aim to excite all the dynamics of the system [15, 16]. The two
methods differ in the way that the former requires the torques to be calculated from external con-
tact forces using inverse dynamics, whereas the latter method obtains the torques directly from the
robot’s force torque sensors in each joint. Both methods have already been compared by applying
them to a state-of-the-art humanoid [17].

A general disadvantage of dynamic model identification based on PE-trajectories lies in the fact
that acceleration data is approximated, which can lead to errors in the parameter estimation. Fur-
thermore, most robots, such as the one used in this work, are not equipped with sensors to measure
joint torques leading to errors due to the estimation of torque from contact forces. It has also not
yet been investigated to what extent the simultaneous optimization of all dynamic parameters can
lead to redundancies in the optimization problem.

In this work, we carry out a model identification procedure on the humanoid robot REEM-C by
PAL Robotics for parameters of category 2. We focus on identifying and update center of mass
locations and masses so that the model best fits the experimental data, which consists of a large
set of static poses. The approach of splitting the simultaneous identification of static and dynamic
parameters of categories 2. and 3. respectively and the use of static poses allows a more accurate
approximation of 2. to reality. This approximation can subsequently serve as a basis for the more
precise identification of the dynamic parameters. The level of model improvement is evaluated by
means of a dynamic reference motion.

This paper is organized as follows. In Section 2, we describe the humanoid robot REEM-C and
the kinematic and dynamic modeling of an anthropomorphic system. In Section 3, we present
the carried out method for model identification. The results of the updated parameter sets are
described in Section 4. The results are discussed in Section 5. Section 6 ends the paper with a
conclusion and perspectives for future research.
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Figure 1. Kinematic structure of REEM-C with 30 (actual) DOF without hands (2 head, 7
each arm, 2 waist, 6 each leg, 19 each hand) [18], the real robot with applied marker set [18],
and the actual marker set consisting of 51 optical markers.

2 ANTHROPOMORPHIC DESCRIPTION
2.1 Humanoid robot REEM-C
REEM-C is a humanoid robot developed by PAL Robotics. With its 1.64 m size the robot is con-
sidered an adult sized robot (Fig. 1 center). It features 30 DOF (Fig. 1 left) not considering each
hand with 19 additional DOF. This is roughly the same amount as the number of DOF of compara-
ble robots such as ARMAR-4 (41), WALK-MAN (31), HRP-2 (30), Talos (30) or DRC-HUBO+
(28) again, not considering the varying DOF of each of the robots’ hands. All joints of REEM-C
are revolute and powered by high gain driving brushed DC motors except for the underactuated
hands. Each motor encoder can track the position and velocity of the motion characteristic, as
external perturbations are rejected by the position controlled motors. REEM-C is equipped with
multiple sensors such as an IR-camera, force torque sensors in the ankles and wrists and an IMU
located in the waist, which is also hosting the batteries of the robot and is the heaviest rigid body
in the system. The robotic feet are rubber coated with a sole size of 21.0 cm × 14.0 cm. However,
the actual support polygon of REEM-C while standing on one leg is estimated to be 15.5 cm ×
10.6 cm, which is a significantly smaller area. The total weight of the robot was measured and
amounts to 77.6 kg, whereas the robotic model only accounts for 67.55 kg.

Even if this weight difference seems large, it can easily be justified. PAL Robotics is always
adapting newer versions of the robot to different requirements. In this regard, REEM-C has been
equipped with more powerful knee motors in the current version 4. In addition, the classic genera-
tion of the initial model from the available CAD files does not take electrical wiring into account.
Furthermore, a homogeneous battery and a homogeneous computer are assumed. The paint and
the lubricant of the motors are not considered. There are also different manufacturing tolerances
and the same material is not always used for the robot’s casing, although the different materials
used are considered to be identical.

The joint configuration of REEM-C does not contain any closed loop and is therefore modeled
using a kinematic tree structure. The origin of the whole system is called the floating base, the
freeflyer or the base link. The floating base determines the global position and orientation of the
robot with respect to the inertial frame. This state is achieved by adding an additional 6-DOF joint
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connecting the floating base to the inertial frame. This results in a system consisting of

q = [qb q j]
T , (1)

where

qJ = [q0 ... qn]
T . (2)

The number of actual joints is represented by n ∈ N. The configuration of the virtual joints to
achieve the global state in terms of translation and rotation of the floating base is indicated by
qb ∈ R6. The joint configurations of the actuated joints is represented by q j ∈ Rn. This gives a
total number of DOF of n+6 where only n joints are actually actuated so the resulting system is
always underactuated, regardless of the size of n. We therefore obtain a maximum number of 74
DOF for REEM-C.

2.2 Dynamic Modeling
The development of dynamic models is an important part of the implementation of motion tra-
jectories for robots. Especially in model-based trajectory generation, the quality of the resulting
motion depends on the individual model parameters. Target trajectories generated on the basis of
models naturally vary in complexity. Accordingly, simpler motion sequences such as the typical
zero-moment-point based walking of a humanoid are more forgiving of model inaccuracies. With
more complex motion sequences, model inaccuracies become increasingly severe, such as when
crossing obstacles [19]. If additional velocity requirements are added to a challenging trajectory
for highly dynamic and impulsive motion sequences, even the smallest model inaccuracies make
execution on a real robot impossible. The latter category includes movements that shift the pelvis
of the multibody system system along the vertical axis, such as sit-to-stand transitions. Therefore,
the description of the robotic system must correspond as closely as possible to reality.

A rigid body system can be described using the equation of motion which can be written in the
following form as a set of ODEs:

H(q, p)q̈+N(q, q̇, p)+C(q, q̇, p) = F(q, q̇, p,τ) , (3)

where q, q̇ and q̈ are vectors of the joint coordinates of position, velocity and acceleration, re-
spectively. The generalized inertia matrix which is dependent on q and p is written as H(q, p).
Likewise, the acting gravity which depends on q and q̇ is denoted as C(q, q̇). The produced torque
by the actuation system is written as F(q, q̇, p,τ), which also includes external forces.

The generalized inertia matrix of the robot and its corresponding motors can be further described
as

H(q, p) =
n

∑
b=1

(Jx
b)

T mbJx
b +(Jω

b )T IbJω
b . (4)

The nonlinear effects N(q, q̇, p) are described as:

N(q, q̇, p) =
n

∑
b=1

(Jx
b)

T mbJ̇x
b +(Jω

b )T IbJ̇ω
b −

(
(Jω

b )T IbJω
b q̇)

)
Jω

b , (5)

where Jx
b and Jω

b are the Jacobians containing the translatory and rotatory information of each rigid
body b. The inertia tensor of b in the global frame is denoted as Ib.

The parameter set which contains the model parameters from categories 1 – 4 (see Section 1) is
denoted as p. As mentioned earlier we focus on the identification of the static parameters ps ⊂ p:
the rigid body masses mb and the center-of-mass (COM) locations of b with respect to the local
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body frame, cb ∈R3. Using mb and cb we can describe the mean location of a distribution of mass
in space, i.e. the distribution which has the property that the weighted position vectors relative to
this point are zero and denote it as r(q) = (x, y, z) with

r(q) =
1
M

n

∑
b=1

mbrb(q, ps) , (6)

where M is the total mass of the system. The global position of cb is obtained by rb based on the
current configuration q of the robot. The ground-projected-center-of-mass (GCOM) is defined as
G := (x, y, hG), with hG being the floor height.

3 APPLIED METHOD FOR MODEL IDENTIFICATION
While previous work has attempted to determine all dynamic parameters simultaneously, our de-
cision to focus on ps allows a identification based on static poses. Therefore no PE trajectories are
needed. This benefits the data quality and accuracy of model improvement. Additionally, we do
not rely on the internal sensor values of the robot, as we aim for the highest possible precision of
the measured values. In the case of REEM-C, the motor encoders do not take into account gear
backlash and an overall mechanical system tilt was observed when the GCOM reached the edge
of the support polygon. Therefore, we utilize measurement systems from a state-of-the-art motion
capture lab. This method is particularly suitable for robots that do not have the necessary sensors
or measuring accuracy to determine the external contact forces and position information of the
rigid bodies. This makes this method completely robot-independent and applicable to all kinds of
different multi-body systems. Subsequently, the inertia matrices are to be estimated, but on the
basis of the optimized, already determined static parameters.

3.1 Static poses
Static poses offer the advantage of taking a measurement at a stage when the robot is almost at rest
and the measurements are nearly free of noise. One disadvantage, however, is that a large amount
of poses are required. A combination of systematic and randomly generated poses was used. We
distinguish 6 categories of poses (Fig. 2 left to right):

1. Double-legged – feet 2 cm apart on one force plate, focus on right arm,

2. Single-legged – standing on the left leg, focus on right leg,

3. Single-legged – standing on the right leg, focus on left leg,

4. Double-legged – feet 2 cm apart on one force plate, focus on torso joints (Fig. 3(a)),

5. Double-legged – feet 2 cm apart on one force plate, crouching,

6. Double-legged – feet 20 cm apart with both feet on one force plate (Fig. 3(b)) and both feet
on one force plate each (Fig. 3(c)),

A total of 172 static poses was generated. Each pose is a static joint configuration, i.e. the GCOM
resides within the convex hull of the support polygon. For each configuration, the individual
degrees of freedom were systematically set to less than 10% and more than 90% of their minimum
and maximum joint range. In addition, at least 10 random poses were generated for the double-
legged categories.

The kinematic data were collected using a passive motion capture system at 150 Hz (Qualisys,
Gothenburg, Sweden) and two ground-embedded force plates at 900 Hz (Bertec, Columbus, OH,
USA). We applied a custom marker set on REEM-C with 51 motion capture markers (14 mm)
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Figure 2. Examples from the applied static poses. From left to right: (1.) On both feet, (2.)
On left foot, (3.) On right foot, (4.) Torso rotation, (5.) Crouching, (6.) Both feet (wide).

(Fig. 1 right). The marker and force data were filtered with a bi-directional Butterworth filter with
a cut-off frequency of 10 Hz.

For each of the static poses, we use the ground-embedded force plates to measure the correspond-
ing center-of-pressure (COP). The COP is a dynamic point described by the forces exerted by two
rigid bodies in contact. Generally, we consider the rigid body of one or more feet of the robotic
system and the ground surface on which the robot is standing. Let us consider the simplified case
of a humanoid with one foot in contact with the ground. The contact force is always positive be-
cause the foot cannot penetrate the ground. The COP describes a point at which the sum of all
compressive forces perpendicular to the sole of the foot is equivalent to a single force acting at
a point where the resulting moment is exactly zero. We distinguish two cases: the contact of a
single foot, where the COP must always lie within the convex hull spanned by the flat contact of
the foot with the ground, and the contact of both feet, where the convex hull is spanned by both
foot contact surfaces. In the latter case, the COP can lie between both feet and outside the actual
contact area of one foot. In static poses, i.e. a situation in which no other forces act apart from the
gravitational forces, the COP corresponds to the GCOM.

3.2 Kinematic Fitting of the Experimental Data
For the parameter optimization it is vital to be able to calculate the GCOM for different poses
and model parameters and compare it to the measured COP. As mentioned earlier, markers were
attached to all segments of the robot and recorded as well to be able to obtain the position of the
robot as accurate as possible. The joint positions recorded by the robot itself can not measure a
global tilt of the system induced by the gear backlash.
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Figure 3. Three different types of static poses of the humanoid REEM-C with applied marker
set (highlighted) on force plates (highlighted) with indicated force vector: (a) standing on both
feet on one force plate, (b) standing on one foot, (c) standing on both feet on two force plates.

For fitting the marker positions onto the model of REEM-C, virtual markers were included in
the model description and their position with respect to the segment they are attached to were
determined via measurements as well as a calibration trial with the robot standing in a neutral
pose. The joint positions of the trials are obtained by minimizing the distance between virtual-
markers and motion capture markers for each frame:

min
q

Nm

∑
m=1
||rV

m(q)− rC
m||22 (7)

with joint angles q, the positions of the virtual markers and of the corresponding motion capture
markers are denoted by rV

m and rC
m, m = 1, . . . ,Nm, respectively, with Nm being the total amount of

markers used. Note that q are the joint positions of one frame or time instance and also include the
position and orientation of the floating base in space.

The optimization problem is solved using the Levenberg-Marquardt method [20] provided by the
open source Rigid Body Dynamics Library – RBDL [21]. This iterative method starts at an initial
guess and is refining it until a termination criterion is met. It is quite robust with respect to different
starting values. However, if the orientation of the model specified by the initial guess is far away
from the orientation specified by the motion capture markers, the calculated solution can contain
joint angles of over 360 degrees and more, exceeding the range of motion of the robot. In order
to avoid this effect, the orientation of the pelvis segment is estimated first using the position of
the corresponding motion capture markers, and included in the initial guess of the first frame. The
start values of the remaining frames are taken from the previous one.

3.3 Experimental Parameter Identification
The recorded marker data are fitted to the model using inverse kinematics. For each static pose,
the GCOM obtained by the dynamic properties of the model is compared to the COP obtained
through force plate measurements. As described in Section 3.1, the measured COP corresponds
to the GCOM during a static pose, and is therefore denoted as GCOMREF . Their deviation is
minimized by solving a least squares problem by updating a set of static model parameters ps:

min
ps

N

∑
n=1
‖gGCOM(qn, ps)−GCOMREF

n ‖2 (8)

s.t. gmass(ps) = M (9)
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Figure 4. Validation motion for model identification which is comparable to the human squat
exercise. The robot shifts the pelvis along the vertical axis and maintains static stability by
shifting the arms and upper body within a period of 5 seconds.

with N the number of poses considered and GCOMREF
m the recorded GCOM of pose m. The

functions gGCOM and gmass calculate the GCOM of pose m specified by the recorded joint positions
qm and the total mass of the robot model based on the current static parameters ps. The measured
total mass of the robot is denoted by M. The parameters consist of the mass and COM location
of the main segments of the robot: shank, thigh, pelvis, trunk, upper arm, forearm and hand.
Segments consisting of only a motor and a cover could not be considered during the optimization
and were fixed at the values given in the original model, as the change in the measured GCOM
would be too small and lead to redundancies in the problem formulation. The same applies to
the head and foot segments. The optimization problem is solved with the SQP method using
Gauss-Newton Hessian and a Levenberg-Marquardt regularization term using the optimal control
software package MUSCOD II [22].

3.4 Validation of model identification
For validation of the model identification a reference motion was recorded using the same ex-
perimental setup. The chosen motion is similar to the human squat exercise, in which the COM
is moved along the vertical plane and at the same time static stability is maintained by shifting
the arms and upper body (Fig. 4). The data obtained was not used during the optimization pro-
cess. The marker data was fitted to the robot model and the torques were calculated using inverse
dynamics. To assess the quality of the model, we evaluated the joint torques and forces acting
at the floating base. These calculated residual forces should be practically very small compared
to the external and internal forces in the equilibrium case for underactuated degrees of freedom.
Therefore, they are considered as the actual error of the numerical solution and can be used as a
benchmark for the quality of model optimization.

4 RESULTS
4.1 Comparison of static poses
We evaluate the improved accuracy of the optimization problem by analyzing the distance of the
recorded GCOMREF and the GCOM obtained by the model parameters for both, the original and
the optimized model (Fig. 5). The optimization problem was able to reduce the deviations for all
172 poses to varying degrees. An overall distance correction from (avg. 9.2 mm, std. 2.3 mm) to
(avg. 0.6 mm, std. 0.4 mm) is reported. However, the optimization does not decrease the distances
to the same extent for all static poses.

4.2 Residual forces and torques
The quality of the model identification is evaluated by the analysis of the residual forces and
torques against a reference trajectory. We report the residual forces and torques acting at the
floating base during the squat motion along all axis and compare the original model against the
optimized model after the identification procedure (Fig. 6). For all plots we identify an oscillation
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Figure 5. Distance of GCOM to GCOMREF for all 172 static poses for the original model
(dark-blue) and the optimized model (light-blue) obtained by model identification.

To
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e
 (
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)

Figure 6. Residual forces (top) and torques (bottom) along all axis of the validating squat-
motion. The actual motion takes place between seconds 1 and 6. We compare the residual
forces with the original model (dark-blue) and the optimized model (light-blue) obtained by
model identification. We applied a moving mean with a centralized window of 7 frames to
reduce the oscillations induced by the COM-stabilizer of the underlying control architecture
of the robot. The original data are semi-transparent in the background.
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Table 1. Avg. [std] of the absolute values of residual torques and forces of the base link
obtained by inverse dynamics of the squat-motion.

Model Tx [Nm] Ty [Nm] Tz [Nm] Fx [N] Fy [N] Fz [N]

Original Model 5.66 [0.98] 5.98 [4.07] 0.68 [0.48] 1.86 [1.66] 2.28 [1.72] 103.02 [4.03]

Optimized Model 0.87 [0.69] 1.35 [1.01] 0.41 [0.30] 1.86 [1.66] 2.29 [1.73] 2.68 [3.04]

of the original data. Therefore, a moving mean with a centralized window of seven frames was
applied to the data.

For the acting residual forces about the longitudinal and lateral axis we can not observe any change
or improvement (Fig. 6 top). For the acting residual forces about the vertical axis a shift of the
force trajectory can be observed, leading to a correction of the absolute values of Fz (Tab. 1). The
acting residual torques show different signatures about all axis for both models (Fig. 6 bottom).
Along the longitudinal axis, a clear offset of the original model of less than -5 Nm can be observed.
This offset is no longer recognizable for the optimized model and an oscillation of almost around
zero is shown. For Tx the residual torques are smaller for the optimized model (Tab. 1). Along the
lateral axis, the original model diverged further into the negative the longer the movement lasted.
This trend is no longer visible in the optimized model and for Ty smaller residual torques are
present (Tab. 1). However, there is a minimal offset to an oscillation around zero again. Similar
to Ty, the residual moments acting around the vertical axis Tz diverge further into the negative,
even if not to the same extent. This trend was corrected for the optimized model, despite a slightly
higher offset to zero than for Ty. For Tz there was only a slight improvement apart from the trend
adjustment, as the deviation was already small at the beginning (Tab. 1).

5 DISCUSSION
The results show an overall improvement of the model optimized by the model identification pro-
cedure. The decrease in distances (Fig. 5), demonstrates that the optimization problem was able to
approach a deviation of almost zero by updating the static model parameters. However, this does
not represent the quality of the model obtained, but evaluates the process of overall optimization.
The fact that the optimization could not minimize all distances to the same extent can be explained
by possible over-fitting of certain poses. When generating the poses, as already discussed, all de-
grees of freedom were systematically covered and supplemented with additional random poses.
It appears, however, that some poses are preferred during the optimization. The differences be-
tween the individual minimization can possibly be approximated by applying a weighting of the
individual poses. Altogether, a minimization in line with expectations was achieved.

The oscillation of residual forces and torques (Fig. 6) is explained by the control architecture of
REEM-C which performs COM stabilization in order to prevent a loss of balance. This is particu-
larly evident along the longitudinal and lateral axes, where the robot tries to keep its GCOM close
to the center of its support polygon by making minimal compensating movements. For the acting
residual forces about the vertical axis a distribution of the unaccounted mass of ∼10.5 kg to the
respective segments can be identified, reducing the absolute vertical force Fz. For the forces acting
on the longitudinal and lateral axes, no significant changes are observed. This is due to the fact that
the translatory forces acting in the horizontal plane are applied here. These are mainly influenced
by the inertial parameters of the segments and the acceleration acting on these segments. Since we
have not updated the inertial matrices and the motion is also slow, no change was expected. By
analyzing the residual torques along all axes, we can observe two things: the overall quality of the
original model and the quality of this mass distribution. The optimization could not only improve
the residual torques, but also achieve the improvement while simultaneously incorporating the
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substantial missing masses. The small offset in the residual torques can be explained by a slight
over-fitting of the experimental data, minor errors in the marker fitting and small measurement
inaccuracies of the force plate and the motion capture system.

6 CONCLUSION
Our results show a significant improvement of the model by updating the segment masses and
COM locations. We are confident that the mass distributions in this case also correspond to real-
ity. This assumption is partly based on the fact that highly dynamic sit-to-stand movements were
possible using this model, which could not be realized with the original model, of course, under
the assumption that the inertia matrices already had sufficient quality based on the CAD exports at
the beginning. The remaining residual forces and torques are probably also a result of the not yet
perfect inertia matrices, although our identification already represents an enormous improvement.
This is the next step in this 2-phase approach to iterative model improvement: Based on these val-
ues, the inertia parameters can now be estimated on basis of the equation of motion, as in previous
work [12, 13, 14]. Of course, for a large number of robots this involves torque estimation, error-
prone data due to finite differences, or noisy data due to possible control architecture. However,
a very accurate approximation of the static parameters of the dynamic model has already been
realized. The absence of possible redundancies in the optimization problem due to simultaneous
determination of all dynamic parameters is also ensured. The further improvement of the model
and also the use of the proposed model and its further analysis on the basis of highly dynamic
sit-to-stand transitions will be part of a future publication.
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ABSTRACT 

This paper presents the research of a hexapod robot as it movement along a defined 

path. Firstly, the performance of the robot product architecture is presented and a 

mathematical kinematic model of the robot is derived according to it, i.e. its legs 

using the Denavit-Hartenberg method and homogeneous transformations. The 

purpose of this was to obtain the equations of inverse kinematics. A simplified robot 

product architecture based on rectangular robot design was used to perform the 

mathematical model. It is shown by a simplified kinematic scheme. In addition, a 

control algorithm was performed using a PID controller in each ankle. The 

controller’s parameters are adjusted on one leg of the robot, and after that, this is used 

to adjust the control on the other legs in this way. The simulation of the controlled 

motion of the robot was performed using the computer program MATLAB Simulink 

and the Simscape Multibody environment. In doing so, only the robot's movement on 

flat terrain was observed. The tripod gait was chosen for the motion model due to the 

simplicity of creating the model and performing the simulation, as well as the speed 

of movement. 

Keywords: hexapod robot, tripod gait, rectangular robot design, PID control 

1. INTRODUCTION 

The application of behavioural simulations (kinematic and dynamic model) in robotics have been 

quite popular in recent years. One of the important reasons is that it allows developers and 

researchers to predict, test and validate robotic performance before prototyping and production 

[1]. It also allows faster and easier improvement of management strategies, focused on safety and 

more cost-effectiveness.  

Using knowledge from nature, i.e. by studying and investigating the locomotion of animals helped 

researchers develop different types of so-called bio-inspired robot [2]. Among these, the most 

convenient is the researching of arthropods that have six legs and thus simply maintain their 

stability (insects, centipedes, symphylans, millipedes etc.). They show quite a robustness of the 

system in case of damage to the legs. One of the typical examples of the development of robots 

from this group is the hexapod robot based on the anatomy and locomotion of insects.  

Hence, researchers encounter the problem of operating such robotic systems, which are quite 

complex and have an increased number of degrees of freedom (DOF) of motion due to the 

performance of the legs of robots from multiple ankles (links) [2]. In practice, many commercial 

six-legged robots have already been carried out, which have found their application in many areas 

such as [3]: research in remote and inaccessible places (space, seabed, volcanoes, etc.), dangerous 

environments (like military operations), construction work, transport operations, etc.  

Therefore, in hexapod robots, two typical systems at architectures and locomotions originating 

from spider insects (hexagonal hexapod) and cockroaches (rectangular hexapod) can be found in 
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the literature [4]. In this paper, a robot configuration based on a rectangular hexapod system 

architecture is described. The hexapod robot is a type of mobile robot that achieves its locomotion 

using six legs (three on each side of chassis), of which at least three or more legs must be on the 

ground to achieve their stable condition.  

When moving in nature, insects can use different types of gait. Inspired by this [5], the most 

common types of gait they can perform (4 typical walks) of hexapod robots are wave gait, tetrapod 

gait, transition gait and tripod gait. In this paper, a model of behaviour based on tripod gait is 

presented.  The reason that tripod gait is the most interesting because of movement speed. It is the 

fastest gait of insects when they maintain their body in dynamic balance [6].   

Figure 1 shows the simplified product architecture of a hexapod robot, while figure 2 shows model 

of one hexapod robot (observed) leg with all the joints and ankles. On this basis, kinematic 

analysis was done to obtain a mathematical model of the robot. The Denavit-Hartenberg (D-H) 

method [7]was used to establish the joint coordinate system of a hexapod robot for it’s one leg. 

Individual parameters on each joint and variables on joints (1 - root, 2- hip and 3 - knee joint) are 

defined, and the equation of motion for the leg is obtained. On each ankle of the open kinematic 

chain, right-wing orthonormal coordinate systems are systematically joined. As the final equation, 

a matrix equation is obtained, and the position of the top of the robot's leg relative to the 

coordinates of the robot's body. Solving the problem of inverse kinematics gives the values of the 

angles of rotation for each of the joints, i.e., the servo motors on them, for a given point in space 

at the observed robot leg.  

When planning the trajectory of the movement of hexapod robots, the movement of the robot's 

leg in its stance (supporting) phase and swing (suspending) phase, and the transfer phase should 

be considered throughout the moving cycle. When performing the behaviour of the robot, the 

simulation was made for flat terrain. The simulation was performed using a combination of 

MATLAB Simulink tool and Simscape Multibody environment. The last one is very acceptable 

for block diagram modelling because it allows a block view of all sensors, bodies, system 

elements, joints and constraints using block components from the Simscape™ family. It also 

provides the possibility of 3D displaying the animation of the dynamics of the observed robot 

system. The control algorithm is derived using a PID controller on one robot leg (in each joint). 

The controller’s parameters are adjusted on one leg of the robot, and after that, this is used to 

adjust the control on the other legs in this way. In joints 1 and 2 PID algorithm is based on position 

control [8]while in joint 3 is based on force control [8].  

Below is a brief description of how this work is organized by its units. After this introduction, the 

next section briefly addresses some earlier research by the authors which this research is an 

extension of, while Section 3 describes the authors’ motivation for conducting this research. 

Section 4 describes the hexapod robot product architecture, while Section 5 describes kinematic 

analysis with mathematical model of the hexapod robot. Section 6 presents control algorithm used 

and the next section presents conducted simulation, while Section 8 presents the obtained results 

with discussion. As the final section of the paper, Section 9 provides a conclusion for the research 

presented, as well as the possible directions of future research. 

2. LITERATURE REVIEW 

In this chapter, the authors give a brief overview of works in the field of creation, modelling and 

control of hexapod robots. We want to point out the work of authors Stoian and Vlado [9], who 

showed so-called two-tier (multi-hierarchical) governance structure. Namely, the control 

algorithm that is used in case of insufficient walking is presented in such way that it analyses the 

working space and gives commands to the robot joints. Its goal is to minimize robot movements 

in such way that the position is secured in an acceptable proximity to the desired position. There 

are also papers with an adaptive approach of robot motion control, like a paper of Quyang et al. 

[10]. The development of algorithms is based on the observed knowledge from nature, where a 

three-dimensional two-layer network of an artificial central sample generator (CPG) was created 

to generate the robot trajectory. The first layer of the generator generates several basic patterns of 
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movement, while the second controls the behavior of the robot's legs, in such way that it adapts 

to changes in the environment in a particular pattern of movement. A motion simulation was 

performed, as well as an experiment. Some of the papers also show certain applications of robots 

for particular purposes, such as work of Gökrem and Can [11], which gives a comparison of two 

regulators PID and Fuzzy Logic, and would be applied to greenhouses, and for operations of 

searching of missing persons. and rescuing. The paper presents the structure of robots and based 

on that cognition, control algorithms are developed. There also can be found a presentation of 

some ready-made solutions such as the development of hexapod robots type RHex, by Saranli et 

al. [12] with six degrees of freedom of movement, where a robot simulation and an experiment in 

walking, running and turning a robot are shown. Like in this paper, there are many papers that 

conduct their simulation using the Simscape tool. One of such papers is the one of author Urrea 

et. al. [13] showing the application of MATLAB simulink tools, Simscape Multibody plugin and 

VRML language. A three-dimensional model of the robot is shown in the VRML language, while 

a PID controller is used for control to obtain a predetermined robot displacement. The work of 

Deng et al. [14] is interesting because it gives an overview of robot movement in rolling gait mode 

and trajectory planning. The idea is to constantly change the gait according to the different 

environment in which the robot moves, as well as the state of its stability. The CPG network is 

also used in the work of the author Campos [15], where the movement of hexapod robots on 

different types of terrain is shown, and the control is solved multi-hierarchically for three levels 

using a central sample generator. The work of the author Tedeschi and Carbone [16] provides an 

overview of robot movement planning with the aim of improving stability speed, navigation 

autonomy and energy efficiency. In addition, a classification of hexapod robots with their 

description is given. 

3. MOTIVATION 

With this paper, the authors wanted to present the beginning of their research on the internal 

project „KO006-2020/1 - Establishment and equipping of laboratory for the course „Systems and 

Control Algorithms in Robotics" and „Mobile Robotics” at the Polytechnic Graduate Professional 

Study of Electrical engineering” supported by Zagreb University of Applied Sciences, Zagreb, 

Croatia., which is currently in active phase. It is planned that part of the developed and presented 

algorithms for the movement of hexapod robots will be used as part of laboratory exercises in 

these courses. Also, by researching this area, authors wanted to expand their knowledge in the 

field of mobile robotics, and they wanted to share it with other young scientists who can also use 

it, as they are just like them at the beginning of their research.  

4. HEXAPOD ROBOT PRODUCT ARCHITECTURE 

When creating the architecture of the hexapod robot, the authors were guided by already known 

findings from published papers. Here we primarily mean studies of the movement of animals in 

nature and their natural forms [17]-[18]. As it is well known, many arthropods (such as insects 

and crustaceans) have six legs for the purpose of maintaining static stability and dynamic stability, 

and a certain robustness of their architecture during their movement. It is interesting that their 

body is made as segmented, which is covered with a connected outer skeleton. As one of the 

examples of hexapod motion in nature, we can give the example of a cockroach and the robot 

architecture derived from it, shown in Figure 1. 

 
Figure 1. Example of anatomy of an insect from nature (cockroach) and based on 

that derived architecture of a hexapd robot shown by a simplified kinematic scheme 
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A typical example of a robot developed on the abovementioned knowledge of insect anatomy and 

their movement is the hexapod robot [2]. What has been developed in them are already known 

modes of movement, one of which will be a tripod gait that will be considered during the control 

of this robot. The biggest problem is degrees of freedom of movement on the legs [4], and we can 

say that it is quite a complex problem to solve the control, ie to create a control algorithm. In 

hexapod robot architecture, we can find two main subgroups in the literature, namely rectangular 

and hexagonal robot architecture [17]. Both architectures are inspired by the appearance of insects, 

where the difference between them is in the symmetry of the position of all 6 legs along the body. 

In the rectangular design, this is done symmetrically, while in the hexagonal design, the legs are 

placed asymmetrically along the robot body. It is important to say that in the literature there is 

another division according to the type of legs of hexapod robots [19], where this type of robot is 

classified in the group of robots with bio-inspired legs in which are mammals, arachnids and 

reptiles. 

In our work, we used the simplified architecture of the hexapod robot, which is shown in Figure 

2 with all the legs, their ankles, and joints. It should be noted that each robot joint has a servo 

motor, which is controlled. Each leg is numbered and all the considered coordinate systems are 

placed on the diagram. According to the given scheme, the performed kinematic analysis of the 

robot will be presented in the next chapter of this paper. 

 
Figure 2. Representation of the considered hexapod robot, shown by a simplified 

kinematic scheme 

5. KINEMATIC AND DYNAMIC ANALYSIS WITH MATHEMATICAL MODEL 

In the previous chapter, we briefly described the architecture of the hexapod robot. Also, we 

showed its simplified configuration shown in the kinematic scheme in Figure 2. That is important 

to be to explained before conducting the kinematic analysis for the reason that we can predict all 

the effects of individual robot motion performance. Considering the symmetrical rectangular 

structure of the legs of the hexapod robot, it can be seen that we have 3 legs which are located on 

both sides, where each leg has 3 degrees of freedom of movement (3 DOF). In order to be able to 

perform an inverse kinematic model of a robot on this basis, we need to define coordinate systems 

for legs and body in the diagram, which later will be used to create all the different phases during 

the tripod gait movement of the robot. Coordinate systems were selected as follows (Figure 3): 

R0(O0, X0 , Y0 , Z0) – global coordinate system 

Rb(Ob , Xb , Yb , Zb) – coordinate system of robot body 

Rli (Oli , Xli , Yli , Zli) – coordinate system of robotic leg (i = 1, 2,…6 – number of robot leg) 

Figure 3 already shows and observes the robot leg (leg no. 5, marked in purple, is selected here). 

It was created in such way that it has three degrees of freedom of movement, because it has already 

been shown that the minimum number of joints of a robot's leg is needed to ensure its mobility 

and movement in different types of gait. Thanks to the symmetrical configuration of the robot, it 

is enough to perform the analysis on only one leg of the robot. 
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Figure 3. Simplified kinematic scheme of robots with defined oordinate systems 

Individual parameters on each joint and variables on joints (1 – root joint, 2- hip joint and 3 - knee 

joint) are defined, and the equation of motion for the leg is obtained in next chapter. On each link 

of the presented open kinematic chain, right-wing orthonormal coordinate systems are 

systematically joined. 

 

Figure 4. Simplified kinematic scheme of the observed leg of robot no. 5 with defined 

coordinate systems shown 

 

When deriving the equations of motion of the hexapod robot, we use Denavit-Hartenberg's 

algorithm [7], which we will apply to the shown observation leg of the robot in Figure 4. In most 

literature [5]-[6] we will find the names denoting the marked points in the diagram in Figure 4. 

Thus joint 1 is called “thorax”, link 1 is called “coxa”, link 2 is called “femur”, and link 3 is called 

“tibia”. Mentioned algorithm is based on the systematic association of right-handed orthonormal 

coordinate systems to each open kinematic chain member. Since we have a more complex 

kinematic structure (3 DOF) here, the mathematical model of direct kinematics [7] is solved by 

relative or homogeneous coordinate transformations e.g. Denavit - Hartenberg parameters for the 

observed robot leg with 3 DOF have already been derived in the paper by the author Mănoiu-Olar 

[20], we present them here in tabular form (Table 1). 

Table 1. Denavit - Hartenberg parameters for the observed robot leg (3 DOF)  

Link ai αi di Θ i 

1 l1 90° d1 Θ 1 

2 l2 0° 0 Θ2 

3 l3 180° 0 Θ3 

 

A matrix of homogeneous transformation 𝐴𝑖
𝑖−1  can also be found in [19, 20], which connects the 

link i-1 with the link i. Based on it, a total transformation is performed later by multiplying the 

matrices 𝐴1
0  , 𝐴2

1   i 𝐴3
2   in order to obtain the resultant matrix representing the relationship 
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between the global coordinate system and the coordinate system at the base of the robot leg 𝐴3
0 . 

The solution of the mentioned system gives the equations of the direct kinematics of the tool, ie 

the base of the robot leg (tool configuration space) (5.1) - (5.3): 

𝑝𝑥 = 𝑐𝑜𝑠𝜃1(𝑙1 + 𝑙2 ∙ 𝑐𝑜𝑠𝜃2 + 𝑙3 ∙ cos(𝜃2 − 𝜃3)) (5.1) 

𝑝𝑦 = 𝑠𝑖𝑛𝜃1(𝑙1 + 𝑙2 ∙ 𝑐𝑜𝑠𝜃2 + 𝑙3 ∙ cos(𝜃2 − 𝜃3)) (5.2) 

𝑝𝑧 = 𝑑1 + 𝑙2 ∙ 𝑠𝑖𝑛𝜃2 + 𝑙3 ∙ sin(𝜃2 − 𝜃3))  (5.3) 

The next step in kinematic analysis is to determine the angles in a particular joint depending on 

the coordinates of that same joint in the coordinate system (joint space). Abovementioned 

variables will enable us when controlling the robot, and as a starting point we will use the 

equations of direct kinematics already defined. This problem has already been solved in the 

available literature [21], so here we list the obtained formulas (5.4) - (5.6): 

Θ1 = 𝑎𝑟𝑡𝑔(
𝑦1
𝑥1
)   (5.4) 

Θ2 = 𝑎𝑟𝑐𝑜𝑠 (
𝑙2
2+𝑥3

2+𝑦3
2−𝑙3

2

2∙𝑙2 ∙√𝑥3
2+𝑦3

2
)+ 𝑎𝑟𝑡𝑔(

𝑦3

𝑥3
)   (5.5) 

Θ3 = Π− arccos(
𝑙2
2+𝑙3

2−(𝑥3
2+𝑦3

2)

2∙𝑙2 ∙𝑙3
)  (5.6) 

where are: 

𝑙1, 𝑙2, 𝑙3 [m] - lengths of links 1, 2 and 3, 

𝜃1 [°] - angle closed by the robot body with link 1, 

𝜃2 [°] - angle closed by link 1 with link 2, 

𝜃3 [°] - angle closed by link 2 with link 3. 

In dynamic analysis, the purpose is to obtain the dynamic equations of motion of robot legs. For 

this purpose, it is necessary to consider all the necessary mass and geometry of the legs (length 

and thickness of the legs), and the geometry of the servo motor in order to obtain the most realistic 

dynamic model. The parameters used will calculate all the required volumes and the axial and 

centrifugal dynamic moments of inertia of the links and servo motors required to perform this 

analysis. Regarding this is an analysis of a multi-ankle leg, a much more applied model was 

chosen for this purpose, and that is the Lagrange-Euler model, which is needed due to the 

possibility of controlling the force of touch by a link 3 of the robotic leg. The model is based on 

the application of generalized coordinates and a combination of the following equations [8]: 

Lagrange equations of the second kind with Lagrange function L(q, �̇� ), kinetic energy of the 

manipulator T (includes the effects of translational and rotational motions), and potential energies 

U. Similar derived dynamic model for a robotic leg with 3 DOF can already be found in the 

literature [13, 22]. Due to the fact that all actuators (servo motors) in the joints are of the same 

mass, it is marked for all 3 servo motors with the same symbol mSM. It should be emphasized that 

the masses of cables, associated electronics and other connecting elements were not considered 

in this analysis. The vector equation representing the dynamic model of the robotic arm [8] is 

written in the form: 

𝑫(𝒒)�̈� + 𝒄(𝒒, �̈�) + 𝒉(𝒒) + 𝒃(�̇�) = 𝑴𝒕  (5.7) 

where are: 

𝑫(𝒒) - manipulator inertia tensor - symmetric matrix of dimensions n x n, 

𝒄(𝒒, �̈�) - connection vector of the i - th joint product of joint velocities and connection 

matrix of velocities C - matrix of dimensions n x n - represents centrifugal and Coriolis 

forces, 

𝒉(𝒒) - vector of gravitational action - vector of dimensions n x 1 - describes the influence 

of gravity on the manipulator  

𝒃(�̇�) - represents the friction that opposes the movement of the robotic arm. 
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q - vector of joint variables. 

Below are the equations of actuator moments (5.8) - (5.10) obtained on the basis of the described 

approach: 

𝑀𝑡1 = 𝜃1̈ ∙ (𝐼𝑚1 + 𝐼𝑙1 +𝑚𝑆𝑀 ∙ (𝑙1
2 + 𝑟𝑆𝑀) + 𝑚2 ∙ (𝑟1

2 + 𝑟2
2))  (5.8) 

𝑀𝑡2 = 𝜃2̈ ∙ (𝐼𝑚2 + 𝐼𝑙2 +𝑚𝑆𝑀 ∙ 𝑙2
2 +𝑚3 ∙ 𝑟3

2) − 𝑔 ∙ (𝑙3 ∙ cos(𝜃2 + 𝜃3) ∙ (3𝑚𝑆𝑀 +𝑚1 +
3𝑚2

2
) +

𝑙2 ∙ 𝑐𝑜𝑠𝜃2 (2𝑚𝑆𝑀 +𝑚1 +
𝑚2

2
))   (5.9) 

𝑀𝑡3 = 𝜃3̈ ∙ (𝐼𝑚3 + 𝐼𝑙3) − 𝑔 ∙ 𝑙3 ∙ cos(𝜃2 + 𝜃3) ∙ (3𝑚𝑆𝑀 +𝑚1 +
3𝑚2

2
)  (5.10) 

where are: 

𝑀𝑡1, 𝑀𝑡2,𝑀𝑡3 [Nm]  - actuator moment (servo motors) in joints 1, 2 and 3, 

𝐼𝑚1, 𝐼𝑚2, 𝐼𝑚3 [kg·m2] - dynamic moment of inertia of servo motor in joints 1, 2 and 3, 

𝐼𝑙1, 𝐼𝑙2, 𝐼𝑙3 [kg·m2] - dynamic moment of inertia of robotic leg joints 1, 2 and 3, 

𝑚𝑆𝑀 [kg] - mass of servo motor in joints 1, 2 and 3, 

𝑚1,𝑚2,𝑚3 [kg]  - mass of linksof the robot leg 1, 2 and 3, 

𝑟𝑆𝑀 [m]  - radius of rotation of servo motor in joints 1, 2 and 3, 

𝑟1, 𝑟2, 𝑟3[m]- radius of rotation of the center of mass in the links of the robot leg 1, 2 and 3, 

𝜃1̈, 𝜃2̈, 𝜃3̈  [m/s2] - angular accelerations in joints 1, 2 and 3. 

The generalized contact force acting on the robotic manipulator [8] is calculated according to 

equation (5.11): 

𝑭 = 𝑴𝒕 − 𝒃(�̇�)  (5.11) 

6. DESCRIPTION OF USED ALGORITHM FOR HEXAPOD ROBOT CONTROL 

A PID controller has been selected to control the robot's ankle joint, i.e. the servo motor built into 

it. It is primarily chosen due to its derivational characteristic, thus improving the stability of the 

regulatory system. It is possible to increase the gain constant K, and at the same time reduce the 

integration constant Ti, which contributes to increasing the ability to more accurately monitor the 

reference quantity [23]. Today, this type of regulator is still the most common type of industrial 

regulators. The reason for this lies in the experience of the staff involved in their setup and 

commissioning, but also in their simplicity and comprehensibility of the control algorithm. 

When developing a control algorithm, the simplest example of robot’s usage locomotion on flat 

terrain is taken here.  

The control signal of the PID controller can be written with the following expression [24] 

𝑢(𝑡) = 𝐾[𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
]    (6.1), 

 

or in the another form 

𝑢(𝑡) = 𝐾𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
    (6.2), 

where are: 

K - proportional gain constant of the regulator, 

Ki = K / Ti - gain constant (reset) of the integration part of the regulator, 

Kd = K·Td - gain constant of the derivation part of the regulator. 

Usually, it takes a long time to set the parameters of the PID controller. On the one hand, it makes 

it easier for us to train the staff to do it (manual adjustment). On the other hand, the procedures 

for this purpose have already been developed. In this paper, the setting option in program 

MATLAB Simulink was used using the PID tuner window, correcting the values using the slider 
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for response time and transient phenomena options. 

The control structure for two joints 1 and 2 of one robot leg shown in Figure 5, where we can 

observe that there are two parts of the system: the part with the regulator and the part of the system 

that concerns the robot. The control of these two joints was performed by position (joint rotation 

angle). The mathematical model of robots and the problem of Inverse kinematics has already been 

described in more detail in the previous chapter of this article. 

 
Figure 5. Display of the concept of control system for robotic joints 1 and 2 

When used the contact force control on which the control of link 3 is based (because it has contact 

with the environment (ground)), it is necessary to install a contact force sensor that compares the 

measured force with the given once. In this case, the presentation of the management concept is 

shown in Figure 6. 

 

Figure 6. Display of the concept of control system for robotic joint 3 

7. SIMULATION 

Before creating the block model, it is necessary to calculate the parameters we need to create that 

model. For this purpose, Table 2 shows the values of the parameters that we used when calculating 

the dynamic moments of inertia [8] of the robot body and legs, as well as their masses (Note: for 

the dimensions of the robot body and legs, the overall dimensions were taken). When calculating 

the dynamic moments of inertia, we assumed that due to the symmetrical structure of the 

components the center of mass coincides with the center of gravity of the body. It is also assumed 

that the material of each component has homogeneous properties, i.e. that the material behaves 

the same in all directions of the component. 

A combination of MATLAB Simulink and Simscape Multibody was used to create the simulation 

model. The use of the Simscape Multibody environment was very helpful because the hexapod 

robot has 6 legs, and each of them has 3 degrees of freedom of movement. This is the model itself, 

and it makes the behavior simulation quite complex. This environment has the advantage that it 

already created blocks for a certain type of joints, as well as the ankles of the legs. Each block 

already has the ability to individually adjust its parameters (geometry, mass, center of mass and 

moments of inertia). 
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Table 2. Parameters needed to calculate the masses and dynamic moments of inertia 

of individual robot components 

Robot geometry 

Dimensions of robot body (L x W x H) [mm] 150 x 70 x 4 

Dimensions of link 1 (l1 x w1 x h1) [mm] 36 x 13 x 8 

Dimensions of link 2 (l2 x w2 x h2) [mm] 52 x 10 x 3 

Dimensions of link 3 (l3 x w3 x h3) [mm] 75 x 15 x 3 

Dimensions of servo motor (ΦDSM x lSM) [mm] Φ12 x 28 

Material for robot body and legs and their density  

duralumin ρ = 2500 kg/m3 

 

The PID block in the MATLAB Simulink tool was used for control in block model in MATLAB 

SImulink. It has already been said that the setting option within the MATLAB Simulink using the 

PID tuner window was used to set the parameters of the PID controller. When creating a motion 

trajectory, a rectilinear motion was used as a function of the direction given to the function in the 

block. When planning the trajectory of the movement of hexapod robots, the movement of the 

robot's leg in its stance (supporting) phase and swing (suspending) phase, and the transfer phase 

should be considered throughout the moving cycle. 

Each leg has three joints, each joint contains a servo motor. In the starting position, angle in the 

joint A is set to value 0°, in the joint B to 45°and in joint C to value 30°. During robot moving, it 

is first planned to move legs 1, 3 and 5 (marked in Figure 1). After these legs touch the ground, 

the same movement is achieved by legs 2, 4 and 6 with the same amplitude and frequency of 

movement. In the presented simulation, the robot walk along a straight path of a certain distance 

was performed, and therefore the robot movement analysis was performed. 

8. DISCUSSION ON OBTAINED RESULTS 

Figures 7 and 8 show the obtained responses of the moments in the joints 2 and 3 of the observed 

robotic leg after the performed simulation. It should be noted that the changes in the angles in the 

joints are set to vary in the range from -45 ° to 45 ° for the joint 2, and in the range from -30 ° to 

30 ° for the joint 3. What should be mentioned is that when modeling the kinematic and the 

dynamic model of the robot, individual phases during the rotation of the legs were not considered. 

Namely, the movement of the robot's leg in its stance (supporting) phase, swing (suspending) 

phase, and the transfer phase should be considered throughout the moving cycle. Some models 

have already been derived on this topic, as shown in [25]. 

 
Figure 7. Display of the change of moment in the joint 2 of observed robotic leg 
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Figure 8. Display of the change of moment in the joint 3 of observed robotic leg 

9. CONCLUSION AND SOME POSSIBLE WAYS OF FUTURE RESEARCH 

In this paper, a development of mathematical model and the control algorithm of a hexapod robot 

during tripod gait locomotion is described.  The kinematic analysis was done to obtain a 

mathematical model of the robot. It was done using the Denavit-Hartenberg (D-H) method and 

homogenous transformations to establish the joint coordinate system of a hexapod robot for its 

one leg. Solving the problem of inverse kinematics gives the values of the angles of rotation for 

each of the joints, for a given point in space at the observed robot leg. During hexapod robot 

trajectory planning, the movement of the robot's leg in its stance (supporting) phase and swing 

(suspending) phase, and the transfer phase should be considered throughout the moving cycle. 

Simulation is performed using combination of computer tool MATLAB Simulink and Simscape 

Multibody environment. The intention is to take advantage of that, so that could be used in 

teaching laboratory exercises in one of the courses at the graduate study on Zagreb University of 

Applied Sciences. The mathematical model presented is derived according to a model based on 

rectangular hexapod design configuration, using PID controllers in each leg joint. During the 

conduct of the research it has been proven that a major drawback is use of a PID controller which 

is quite difficult to set their controller parameters. When developing a control algorithm, the 

simplest example of robot’s usage locomotion on flat terrain is taken here.  

The development and application of another regulator based on adaptive control, as well as, its 

application for these robots on uneven terrains, has been presented as several directions for future 

research. The intention is to develop algorithms for other standard types of gait hexapod robots, 

and compare them with each other. It would also be good to make a prototype of the described 

robot, and conduct experimental results in order to confirm the simulation results. 
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ABSTRACT

In recent years, research and development of robots that exist in the same space as hu-
mans and can collaborate with humans have been actively carried out. If the body of
a robot is made of a hard material, it may cause injury. Therefore, attempts have been
made to make a robot with a soft body using rubber or resin. In order to accelerate
such research on soft robotics, it is necessary to establish fast and stable simulation
algorithm for robots containing viscoelastic bodies such as rubber and resin. There-
fore, in this study, we consider to approximate viscoelastic bodies with finite rigid
body segments and connect them with joints and linear viscoelastic elements such as
Voigt model and Maxwell model to approximate viscoelastic properties. The recur-
sive dynamics algorithm is used to speed up the calculation, and the generalization-α
method is used to stabilize the numerical integration. In particular, we propose a new
method on how to incorporate the Maxwell model into recursive dynamics algorithm
and generalization-α method. The effectiveness of the proposed method is confirmed
by some numerical examples.

Keywords: Soft robotics, Recursive algorithm, Viscoelastic material, Maxwell model.

1 INTRODUCTION
In the past, industrial robots had to be fenced for safety and completely separate the working
range of humans and robots. However, due to the relaxation of the law, robots that meet certain
conditions can now exist and collaborate in the same space as humans without being surrounded
by fences. Furthermore, in recent years, many robots for long-term care and home use have been
developed, and robots are deeply entering the living space of human beings. If the body of a robot
that collaborates with a person is made of a hard material, it may cause serious injury when it
comes into contact with a person. Therefore, attempts have been made to give the robot a soft
body using rubber or resin. In order to accelerate the research and development of such soft
robotics [1], it is necessary to establish a high-speed and stable dynamical simulation technology
for robot systems including viscoelastic bodies such as rubber and resin. So far, research has been
conducted to describe viscoelastic bodies by the nonlinear finite element method and incorporate
them into multibody dynamics analysis [2, 3], however there is a problem that the theory is difficult
and the calculation time is enormous.

Therefore, in this study, we consider to approximate viscoelastic bodies with finite rigid body
segments and connect them with joints and linear viscoelastic elements such as Voigt model and
Maxwell model to express viscoelastic properties. The recursive dynamics algorithm [4] is used
to speed up the calculation, and the generalized-α method [5] is used to stabilize the numerical
integration. In this paper, we examine how to incorporate the Maxwell model into the recursive
dynamics algorithm and the generalized α method, and propose a new method. We perform a dy-
namical simulation of a 2-link manipulator composed of rubber links to confirm the effectiveness
of the proposed method.
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(a) Voigt model (b) Maxwell model (c) Generalized Maxwell model
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2 MODEL OF SOFT ROBOT SYSTEM INCLUDING VISCOELASTIC BODY
The nonlinear finite element method is sometimes used to model a viscoelastic body, but it is
not suitable for real-time simulation due to the large amount of calculation. On the other hand,
a method of approximately expressing viscoelasticity by using the Voigt model, Maxwell model,
generalized Maxwell model, etc., which combine the spring element and damper element as shown
in Fig. 1, is also used. In this study, individual viscoelastic bodies included in a robot system are
approximated by multiple rigid body elements connected by rotational joints or prismatic joints,
and viscoelastic properties are expressed by adding spring elements and damper elements to the
joints.

As an example, consider a 2-link manipulator composed of rubber links as shown in Fig. 2. Here,
one link is approximated by two rigid body segments, and it is assumed that the axial deformation
is negligible, and the bending deformation is expressed by connecting with a rotating joint. Then,
by adding an appropriate rotary spring and rotary damper to the joint, the viscoelastic property of
the link is approximately expressed. As a result, the system in Fig. 2 can be modeled as in Fig. 3.
In the following, the relative angular displacement of the joint i is qi, the spring constant of the
spring added to the joint i is ki, and the viscous damping coefficient of the damper is ci. The length
of the body i is li, the mass is mi, and the moment of inertia around the center of gravity is Ii.

In this study, as a stepping stone for the construction of a general calculation method, we formulate
an algorithm that can perform high-speed and stable calculations for the system that was modeled
as an open-loop rigid multibody system as shown in Fig. 4 and the Voigt model or Maxwell model
as shown in Fig. 5 was added to the joints. When a soft robot system containing a viscoelastic body
is modeled as a rigid multibody system as shown in Fig. 4, a high-speed recursive algorithm can
be applied to dynamic calculations. In addition, the generalized-α method, which has excellent
stability and allows a large time step size, is used for numerical integration.

3 RECURSIVE DYNAMICS ALGORITHM
In this section, the recursive dynamics algorithm [4] is extended to a rigid multibody system in
which rigid bodies are connected in series by rotating joints as shown in Fig. 4 and a Voigt model
or Maxwell model is added to the joints as shown in Fig. 5. It is assumed that the total number
of bodies is N, including the rigid body elements introduced to approximate the viscoelastic body.
Here, the body i coordinate system Σi is defined so as to match the joint i on the root side. Let
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the vector from the origin of the absolute coordinate system Σ0 to the origin of Σi be RRRi, and the
angle of Σi with respect to Σ0 be ϕi. Then, the velocity relationship and acceleration relationship
between the adjacent body i and body i−1 can be expressed by the following equations.

vvvi = DDDivvvi−1 + JJJiq̇i (1)

aaai = DDDiaaai−1 + JJJiq̈i +βββ i (2)

where vvvi = [ṘRRT
i ϕ̇i]

T , aaai = [R̈RRT
i ϕ̈i]

T , JJJi is the Jacobian matrix which represents the effect of joint
velocity q̇i on generalized velocity vvvi，DDDi = diag.[AAAi,1]，AAAi is the rotation matrix from Σi to Σi−1,
and βββ i = ḊDDivvvi−1 + J̇JJiq̇i.

On the other hand, the equations of motion of the body i can be expressed as follows.

MMMiaaai +hhhi = QQQi (3)

where MMMi is the generalized mass matrix, hhhi is the quadratic velocity vector, QQQi is the generalized
force vector. The generalized force QQQi acting on the body i is divided into three forces, that
is, the generalized force QQQJ

i received from the body i − 1 via the joint i, the reaction force of
the generalized force QQQJ

i+1 exerted by the body i on the body i + 1 via the joint i + 1, and the
other generalized forces QQQO

i . Therefore, it can be expressed as QQQi = QQQJ
i + QQQO

i − DDDT
i+1QQQJ

i+1. By
substituting this into Eq. (3), solving for QQQJ

i , and taking the inner product with JJJi, then the joint
driving torque τi can be obtained.

QQQJ
i = MMMiaaai +hhhi −QQQO

i +DDDT
i+1QQQJ

i+1 (4)

τi = JJJT
i QQQJ

i +Qi (5)

where Qi is the reaction torque of Qi applied by the Voigt model or Maxwell model added to the
joint i.

Inverse dynamics calculation can be executed by calculating the equations (1) and (2) from the
root i = 1 to the tip i = N, and then calculating the equations (4) and (5) from the tip i = N to
the root i = 1. By repeatedly using this inverse dynamics calculation, the mass matrix MMM, and
the centrifugal, Coriolis and gravitational force hhh of the following equations of motion in minimal
form can be calculated efficiently.

MMM(qqq)q̈qq+hhh(qqq, q̇qq) = τττ (6)

4 NUMERICAL INTEGRATION METHOD
Numerical integration methods are roughly divided into explicit methods and implicit methods.
Since a system containing a viscoelastic body is generally a stiff system, it is necessary to make the
time step h extremely small when using the explicit method in which the stable range is limited,
which requires a huge amount of calculation time. On the other hand, the implicit method is
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excellent in stability, and since the time step h can be taken large, the solution can be obtained
in a short calculation time. Here, we use the generalized-α method [5], which is a single-step
implicit method. The implicit method requires iterative calculations at each step, and at that time
the Jacobian matrix must be calculated. Hence, we propose a method for calculating the Jacobian
matrix strictly and at high speed using the recursive dynamics algorithm formulated in section 3
to shorten the calculation time.

4.1 Generalized-α method
Let us divide the interval t ∈ [0, t f ] for the solution into 0 = t0 < t1 < · · · < tp−1 < tp = t f and
express the value of qqq(t) at time tn as qqqn. We also introduce an auxiliary variable vector aaan of the
same dimension as the acceleration that defined by the following recurrence formula.

(1−αm)aaan+1 +αmaaan = (1−α f )q̈qqn+1 +α f q̈qqn, aaa0 = q̈qq0 (7)

Then, we use the following formula in which q̈qqn and q̈qqn+1 in Newmark’s integral formula are
replaced with aaan and aaan+1, respectively.

q̇qqn+1 = q̇qqn +h(1− γ)aaan +hγaaan+1 (8)

qqqn+1 = qqqn +hq̇qqn +h2
(

1
2

−β
)

aaan +h2βaaan+1 (9)

From equations (7) to (9), the following relationship can be obtained.

q̇qqn+1 =
γ

hβ
(qqqn+1 −qqqn)+

(
1− γ

β

)
q̇qqn +h

(
1− γ

2β

)
aaan (10)

q̈qqn+1 =
1−αm

h2β (1−α f )

{
qqqn+1 −qqqn −hq̇qqn −h2

(
1
2

−β
)

aaan

}
+

αmaaan −α f q̈qqn

1−α f
(11)

From equations (10) and (11), it can be seen that q̇qqn+1 and q̈qqn+1 are only functions of qqqn+1, if qqqn,
q̇qqn, q̈qqn and aaan at time t are known. If the above equations are partially differentiated with respect
to qqqn+1, the following relationships can be obtained.

∂ q̇qqn+1

∂qqqn+1
= γ ′EEE,

∂ q̈qqn+1

∂qqqn+1
= β ′EEE (12)

where γ ′ ≡ γ/(hβ ), β ′ ≡ (1−αm)/{h2β (1−α f )}.

The residual of the equations of motion in minimal form (6) at time t = tn+1 is written by explicitly
expressing q̇qqn+1 and q̈qqn+1 are functions of qqqn+1 as follows.

eee(qqqn+1) ≡ MMM(qqqn+1)q̈qqn+1(qqqn+1)+hhh(qqqn+1, q̇qqn+1(qqqn+1))− τττn+1 (13)

From the above equation, the Jacobian matrix obtained by differentiating eee with respect to qqqn+1
can be calculated as follows.

∂eee
∂qqqn+1

=
∂MMM(qqqn+1)

∂qqqn+1
q̈qqn+1(qqqn+1)+MMM(qqqn+1)

∂ q̈qqn+1

∂qqqn+1

+
∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂qqqn+1
+

∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂ q̇qqn+1

∂ q̇qqn+1

∂qqqn+1

= β ′MMM(qqqn+1)+ γ ′DDDt(qqqn+1)+KKKt(qqqn+1) ≡ SSS(qqqn+1) (14)

where KKKt and DDDt are matrices defined as follows.

KKKt(qqqn+1) ≡ ∂MMM(qqqn+1)

∂qqqn+1
q̈qqn+1(qqqn+1)+

∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂qqqn+1
, DDDt(qqqn+1) ≡ ∂hhh(qqqn+1, q̇qqn+1(qqqn+1))

∂ q̇qqn+1
(15)

If SSS(qqqn+1) can be calculated, qqqn+1, q̇qqn+1 and q̈qqn+1 at time t = tn+1 can be obtained by repeating
the following calculation until eee(qqqn+1) = 000 is satisfied within the margin of error.

SSS(qqq(k)
n+1)∆qqq(k)

n+1 =−eee(k), qqq(k+1)
n+1 = qqq(k)

n+1+∆qqq(k)
n+1, q̇qq(k+1)

n+1 = q̇qq(k)
n+1+γ ′∆qqq(k)

n+1, q̈qq(k+1)
n+1 = q̈qq(k)

n+1+β ′∆qqq(k)
n+1

(16)
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4.2 Acceleration of generalized-α method by recursive algorithm
In this study, we propose a Jacobian matrix calculation method with high calculation efficiency
that takes advantage of the characteristics of the recursive algorithm, and introduce it into the
generalized-α method to speed up the calculation. From Eq. (14), it can be seen that KKKt and DDDt

can be expressed as follows.

KKKt(qqqn+1)=
∂

∂qqq
{MMM(qqq)q̈qq+hhh(qqq, q̇qq)}

∣∣∣∣
t=tn+1

=
∂τττ
∂qqq

∣∣∣∣
t=tn+1

,DDDt(qqqn+1)=
∂

∂ q̇qq
{MMM(qqq)q̈qq+hhh(qqq, q̇qq)}

∣∣∣∣
t=tn+1

=
∂τττ
∂ q̇qq

∣∣∣∣
t=tn+1

(17)

Since the matrix KKKt is the partial derivative of the inverse dynamics relationship with respect to qqq,
it can be obtained by the following calculation.

1) Perform the following calculations from i = 1 to N and k = 1 to N.

∂vvvi

∂qk
= DDDi

∂vvvi−1

∂qk
+

∂DDDi

∂qk
vvvi−1 (18)

∂aaai

∂qk
= DDDi

∂aaai−1

∂qk
+

∂DDDi

∂qk
aaai−1 +

∂βββ i

∂qk
(19)

2) Perform the following calculations from i = N to 1 and k = 1 to N.

∂QQQJ
i

∂qk
= MMMi

∂aaai

∂qk
+

∂hhhi

∂qk
− ∂QQQO

i

∂qk
+DDDT

i+1
∂QQQJ

i+1

∂qk
+

∂DDDT
i+1

∂qk
QQQJ

i+1 (20)

∂τi

∂qk
= JJJT

i
∂QQQJ

i

∂qk
+

∂Qi

∂qk
(21)

These recurrence formulas are obtained by partially differentiating Eqs. (1), (2) and Eqs. (4),
(5) with respect to qk. Since ∂DDDi/∂qk, ∂βββ i/∂qk and ∂hhhi/∂qk appearing in the equation can be
calculated in advance, by starting from a known initial value and solving the above recurrence
formula in sequence, ∂τττ/∂qqq = KKKt can be obtained without any differential calculation.

Similarly, the matrix DDDt = ∂τττ/∂ q̇qq can be calculated as follows.

1) Perform the following calculations from i = 1 to N and k = 1 to N.

∂vvvi

∂ q̇k
= DDDi

∂vvvi−1

∂ q̇k
(22)

∂aaai

∂ q̇k
= DDDi

∂aaai−1

∂ q̇k
+

∂βββ i

∂ q̇k
(23)

2) Perform the following calculations from i = N to 1 and k = 1 to N.

∂QQQJ
i

∂ q̇k
= MMMi

∂aaai

∂ q̇k
+

∂hhhi

∂ q̇k
− ∂QQQO

i

∂ q̇k
+DDDT

i+1
∂QQQJ

i+1

∂ q̇k
(24)

∂τi

∂ q̇k
= JJJT

i
∂QQQJ

i

∂ q̇k
+

∂Qi

∂ q̇k
(25)

These recurrence formulas are obtained by partially differentiating Eqs. (1), (2) and Eqs. (4),
(5) with respect to q̇k. Since ∂βββ i/∂ q̇k and ∂hhhi/∂ q̇k appearing in the equation can be calculated
in advance, by starting from a known initial value and solving the above recurrence formula in
sequence, ∂τττ/∂ q̇qq = DDDt can be obtained without any differential calculation.

Since MMM(qqqn+1) can be calculated efficiently by the method explained in section 3, the Jacobian
matrix SSS(qqqn+1) in Eq. (14) can be calculated quickly and accurately if KKKt(qqqn+1) and DDDt(qqqn+1) are
obtained by the above calculation procedure. However, in order to perform dynamics computa-
tions, it is necessary to calculate Qi in Eq. (5), and in order to calculate the Jacobian matrix, it is
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necessary to obtain ∂Qi/∂qk in Eq. (21) and ∂Qi/∂ q̇k in Eq. (25). In the following, the calculation
methods of Qi, ∂Qi/∂qk and ∂Qi/∂ q̇k in the case of the Voigt model are summarized in section 5.
On the other hand, the Maxwell model is not easy, so in section 6, we first examine the analysis
method of the Maxwell model for a simple 1DOF system. Then, using the results, we propose the
calculation methods of Qi, ∂Qi/∂qk and ∂Qi/∂ q̇k in the case of the Maxwell model in section 7.

5 CALCULATION METHOD FOR VOIGT MODEL
The Voigt model can express creep, which is one of the viscoelastic properties. In this chapter, we
explain the calculation methods of Qi, ∂Qi/∂qk and ∂Qi/∂ q̇k in the case of the Voigt model, and
confirm the effectiveness of the proposed method by numerical simulation.

5.1 Method for computiong Qi, ∂Qi/∂qk and ∂Qi/∂ q̇k

In the case of the Voigt model shown in Fig. 5 (a), the reaction torque Qi of the torque Qi applied
to the joint i can be expressed by the following equation.

Qi = ki(qi −q0
i )+ ciq̇i (26)

where q0
i is the angle at which the spring has a natural length. From the above equation, it can be

seen that ∂Qi/∂qk and ∂Qi/∂ q̇k can be calculated as follows.

∂Qi

∂qk
=

{
ki (k = i)
0 (k ̸= i)

,
∂Qi

∂ q̇k
=

{
ci (k = i)
0 (k ̸= i)

(27)

5.2 Verification by numerical simulation
Here, we consider the case where a 2-link manipulator composed of rubber links as shown in Fig. 2
is modeled as shown in Fig. 3 and a Voigt model is added to the joint. The following reference
trajectories are given to the 2-link manipulator shown in Fig. 2.





θ1(t) = −π
4

cos(
π
t f

t)+
π
4

θ2(t) =
π
4

cos(
π
t f

t)− π
4

(0 ≤ t ≤ t f ) (28)

where t f is the operating time. First, assuming that the two links are rigid bodies, inverse dynamics
calculation is performed to obtain the joint driving torques. Then, those driving torques are applied
to the 1st and 3rd joints of the model shown in Fig. 3, forward dynamics calculations are conducted,
and dynamics simulations that take viscoelasticity into consideration are performed. We set l1 =
l2 = l3 = l4 = 0.1m，m1 = m2 = m3 = m4 = 0.01840kg，I1 = I2 = I3 = I4 = 1.54866×10−5 kgm2，
k1 = k3 = 0.0001Nm/rad，k2 = k4 = 8000.0Nm/rad，c1 = c3 = 0.0，c2 = c4 = 0.2Nms/rad and
t f = 2s in the simulation.

Let us consider the solution that computed by the Runge-Kutta method with the sufficiently small
time step h = 6.66667 × 10−5 as the true solution of this problem. Figure 6 shows the errors of
the proposed method and the Runge-Kutta method with respect to the reference solution. The
Runge-Kutta method has high accuracy, but since it is an explicit method, it is easily destabilized
and diverged when h > 1.0 × 10−4. On the other hand, the proposed method is based on the
generalized-α method which is an implicit method that has excellent stability, it was possible to
obtain a solution without divergence even if h is increased.

Figure 7 shows the calculation time required to simulate a physical phenomenon for 2 seconds
using the Runge-Kutta method and the proposed method (CPU: Intel (R) Core (TM) i7-7700 CPU
@ 3.60GHz, Compiler: Visual C ++). From the figure, the calculation time is also significantly
shortened, and it can be confirmed that the calculation time is faster than the Runge-Kutta method
when compared with the same h. Furthermore, even if the time step h is large, it does not become
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Figure 6. Comparison of integration error
(Voigt model)
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Figure 7. Comparison of computational time
(Voigt model)

unstable, so the calculation can be speeded up within the range that satisfies the required accuracy.
In this problem, when h > 2.5 × 10−4, the calculation time is less than 2 seconds, and real-time
calculation can be achieved.

From the above, it was confirmed that when the Voigt model is added to the joint, high-speed and
stable dynamics simulation is possible by the proposed method.

6 EXAMINATION OF ANALYSIS METHOD OF MAXWELL MODEL
The Voigt model can express creep, which is one of the important properties of viscoelastic bodies,
but it is necessary to be able to handle the Maxwell model in order to express stress relaxation,
which is another important property. However, in the Maxwell model, it is not easy to calculate
Qi, and the calculation method of its partial derivative has not been established. So far, when
calculating the Maxwell model, the equation of motion was often converted into a state equation
and the numerical integration method developed for the first-order differential equation was ap-
plied. However, in order to introduce the Maxwell model into the calculation methods proposed
in sections 3 and 4, it is necessary to be able to apply the generalized-α method in the form of
the equations of motion. Therefore, in this section, the calculation method is first developed for
a simple 1DOF system. Then, in section 7, the calculation method is extended to the multibody
system.

6.1 Conventional method based on state equations
First, the commonly used calculation method will be explained. Let us denote the mass is M, the
displacement is q(t), and the external force is Q(t) for the 1DOF Maxwell model shown in Fig. 8,
then the equation of motion can be written by

Mq̈(t) = Q(t) (29)

If the displacement of the spring and damper alone is denoted by qk(t) and qc(t) respectively, then
the following relationship holds.

q(t) = qk(t)+qc(t) (30)
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Figure 8. 1-DOF Maxwell model

On the other hand, if the spring constant is k and the damping coefficient is c, the external force
Q(t) can be expressed in the following two ways.

Q(t) = −kqk(t) (31)

Q(t) = −cq̇c(t) (32)

From Eqs. (29), (31) and (32), the following relationship can be obtained.

q̇k(t) = −M
k

...q (t) (33)

q̇c(t) = −M
c

q̈(t) (34)

By differentiating Eq. (30) with respect t and substituting Eqs. (33) and (34) leads to

q̇(t) = q̇k(t)+ q̇c(t) = −M
k

...q (t)− M
c

q̈(t) (35)

That is, the following relationship is obtained.

...q (t) = − k
M

q̇(t)− k
c

q̈ (36)

Define the state variables as x1(t) = q(t), x2(t) = q̇(t), x3(t) = q̈(t), then the following state equa-
tions can be obtained.

ẋ1(t) = x2(t) (37)

ẋ2(t) = x3(t) (38)

ẋ3(t) = − k
M

x2(t)− k
c

x3(t) (39)

By applying the numerical integration method developed for the first-order differential equations
such as the Runge-Kutta method to the state equations, the time response q(t) can be calculated.

6.2 Proposed method based on equations of motion
In order to introduce the Maxwell model into the calculation methods proposed in sections 3 and
4, it is necessary to enable numerical integration by the generalized-α method in the form of the
equations of motion without converting it to the state equations.

By differentiating Eq. (30) with respect t and substituting Eqs. (31) and (32) leads to

q̇(t) = q̇k(t)+ q̇c(t) = −1
k

Q̇(t)− 1
c

Q(t) (40)
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That is, the following differential equation is obtained.

Q̇(t)+
k
c

Q(t) = −kq̇(t) (41)

Define the initial value of Q(t) is Q0, then the solution of this differential equation is derived as

Q(t) = −e− k
c t

{∫ t

0
e

k
c τkq̇(τ)dτ −Q0

}
(42)

When the equation of motion (29) and the external force of Eq. (42) are discretized by the time
step h, it can be expressed as the following equation at t = tn+1.

Mq̈n+1 = Qn+1 (43)

Qn+1 = −e− k
c {(n+1)h}

{
n+1

∑
j=0

e
k
c ( jh)kq̇ jh−Q0

}
(44)

Furthermore, by arranging the Eq. (44), the following recurrence formula can be obtained.

Qn+1 = −e− k
c {(n+1)h}

{
n

∑
j=0

e
k
c ( jh)kq̇ jh−Q0 + e

k
c {(n+1)h}kq̇n+1h

}

= −kq̇n+1h+ e− k
c h

[
−e− k

c (nh)

{
n

∑
j=0

e
k
c ( jh)kq̇ jh−Q0

}]

= −kq̇n+1h+ e− k
c hQn (45)

On the other hand, Newmark’s integral formula is expressed as follows.

q̇n+1 = q̇n +h(1− γ)q̈n +hγ q̈n+1 (46)

qn+1 = qn +hq̇n +h2
(

1
2

−β
)

q̈n +h2β q̈n+1 (47)

Here, if we define ∆q = qn+1 −qn, the following relationship can be obtained.

qn+1 = qn +∆q (48)

q̇n+1 =

(
1− γ

2β

)
hq̈n +

γ
βh

∆q (49)

q̈n+1 =

(
1− 1

2β

)
q̈n − 1

βh
q̇n +

1
βh2 ∆q (50)

In the generalized-α method, the equation of motion is modified as follows in order to improve
the numerical damping characteristics.

Mq̈∗ = Q∗ (51)

q̈∗ = (1−αm)q̈n+1 +αmq̈n (52)

Q∗ = (1−α f )Qn+1 +αQn (53)

Substituting Eqs. (52), (53) and Eqs. (48) to (50) into Eq. (51), we can obtain the following
equation.
{

1−αm

h2β (1−α f )
M +

γ
β

k
}

∆q =

[(
e− k

c h +
α f

1−α f

)
Qn − 1−αm

1−α f
M

{(
1− 1

2β

)
q̈n − 1

βh
q̇n

}

− αm

1−α f
Mq̈n − k

{(
1− γ

2β

)
h2q̈n +

(
1− γ

β

)
hq̇n

}]
(54)

Since the coefficient of ∆q and right hand side in the above equation are known, ∆q can be cal-
culated. Then, by substituting ∆q into Eqs (48) to (50), qn+1, q̇n+1 and q̈n+1 can be calculated.
Furthermore, by substituting q̇n+1 into Eq. (45), Qn+1 can be obtained. By repeating the above
procedure, the time response q(t) can be calculated.
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Figure 9. Comparison of time response

6.3 Verification by numerical simulation
Here, we compare the proposed method explained in Section 6.2 with the conventional method
explained in Section 6.1. As an example, the dynamics simulation was performed with the pa-
rameters set to M = 1kg, D = 1Ns/m, K = 1N/m, Q0 = −1.0N, q(0) = 1.0m, q̇(0) = 0m/s and
q̈(0) = Q0/M = −1.0m/s2. The red line in Fig. 9 shows the result of solving by applying the
conventional method and the Runge-Kutta method. Since the time step h is set sufficiently small
as h = 0.0002, it is considered that a solution close to the true one is obtained. Therefore, the
validity of the proposed method is verified using this solution as a reference solution. The result of
the calculation with h = 0.001 by the proposed method is shown by the blue dashed line in Fig. 9.
From the figure, it can be confirmed that the blue dashed line overlaps with the red line and the cal-
culation can be performed accurately. Since the proposed method uses the generalized-α method,
which is an implicit numerical integration method, it did not diverge even if it was increased to
h = 0.1,0.5. From the above, the validity of the proposed calculation method was confirmed.

7 CALCULATION METHOD FOR MAXWELL MODEL
In this section, the analysis method of the Maxwell model developed for 1DOF system in section
6 is extended to multibody systems. We formulate the calculation methods of Qi, ∂Qi/∂qk and
∂Qi/∂ q̇k required when using the methods proposed in sections 3 and 4 for the Maxwell model.

7.1 Method for computiong Qi, ∂Qi/∂qk and ∂Qi/∂ q̇k

In the case of the Maxwell model shown in Fig. 5 (b), the torque Qi(t) applied to the joint i can be
calculated from Equation (42) as follows.

Qi(t) = −e− ki
ci

t

{∫ t

0
e

ki
ci

τkiq̇i(τ)dτ −Q0
i

}
(55)

where Q0
i is the initial value of Qi(t). Then, the Eq. (5) can be expressed as follows.

τi = JJJT
i QQQJ

i +Qi(t), Qi(t) = −Qi(t) = e− ki
ci

{∫ t

0
e

ki
ci

τkiq̇i(τ)dτ −Q0
i

}
(56)

From Eq. (45), it is understood that Qi(t) can be expressed by the following recurrence formula,
if it is discretized by the time step h at t = tn.

Qi(tn) = −kiq̇i(tn)h+ e− ki
ci

hQi(tn−1) (57)
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Therefore, Qi(t) in Eq. (56) can be calculated by the following recurrence formula.

Qi(tn) = kiq̇i(tn)h+ e− ki
ci

hQi(tn−1) (58)

Next, let us consider the calculation methods of ∂Qi/∂qk and ∂Qi/∂ q̇k that required when calculat-
ing the Jacobian matrix. By shifting the subscript of Eq. (58) by one and rewriting it for t = tn+1,
the following equation is obtained.

Qi(tn+1) = kiq̇i(tn+1)h+ e− ki
ci

hQi(tn) (59)

By partially differentiating the above equation, the following relationship can be obtained.

∂Qi

∂qi

∣∣∣∣
t=tn+1

=
∂Qi(tn+1)

∂qi(tn+1)
= 0,

∂Qi

∂ q̇i

∣∣∣∣
t=tn+1

=
∂Qi(tn+1)

∂ q̇i(tn+1)
= kih (60)

That is, ∂Qi/∂qk and ∂Qi/∂ q̇k can be calculated as follows.

∂Qi

∂qk
= 0,

∂Qi

∂ q̇k
=

{
kih (k = i)
0 (k ̸= i)

(61)

From the above, the calculation method proposed in sections 3 and 4 can be extended to the
multibody system in which the Maxwell model is added to the joint.

7.2 Verification by numerical simulation
Here, we consider the case where a 2-link manipulator composed of rubber links as shown in Fig. 2
is modeled as shown in Fig. 3 and a Maxwell model is added to the joints. As in section 5.2, the
desired trajectory represented by Eq. (28) is given to the 2-link manipulator in Fig. 2, and the
inverse dynamics calculation is performed by assuming that the two links are rigid bodies. Then,
the obtained joint driving torques are applied to the 1st and 3rd joints of the model shown in Fig. 3
to perform a dynamic simulation considering viscoelasticity. The parameters are set to l1 = l2 =
l3 = l4 = 0.1m，m1 = m2 = m3 = m4 = 0.01840kg，I1 = I2 = I3 = I4 = 1.54866 × 10−5kgm2，
k1 = k3 = 0.0001Nm/rad，k2 = 5000.0Nm/rad，k4 = 7000.0Nm/rad，c1 = c3 = 0.0001Nms/rad，
c2 = 0.2Nms/rad，c4 = 0.3Nms/rad and t f = 2s.

Let us consider the solution that computed by the Runge-Kutta method with the sufficiently small
time step h = 6.66667 × 10−5 as the true solution of this problem. Figure 10 shows the errors
of the proposed method and the Runge-Kutta method with respect to the reference solution. The
Runge-Kutta method has high accuracy, but since it is an explicit method, it is easily destabilized
and diverged when h > 9.52 × 10−5. On the other hand, the proposed method is based on the
generalized-α method which is an implicit method that has excellent stability, it was possible to
obtain a solution without divergence even if h is increased.

Figure 11 shows the calculation time required to simulate a physical phenomenon for 2 seconds
using the Runge-Kutta method and the proposed method (CPU: Intel (R) Core (TM) i7-7700
CPU@3.60GHz, Compiler: Visual C ++). From the figure, the calculation time is also signifi-
cantly shortened, and it can be confirmed that the calculation time is faster than the Runge-Kutta
method when compared with the same h. Furthermore, even if the time step h is large, it does not
become unstable, so the calculation can be speeded up within the range that satisfies the required
accuracy. In this problem, when h > 2.5 × 10−4, the calculation time is less than 2 seconds, and
real-time calculation can be achieved.

From the above, it was confirmed that high-speed and stable dynamical simulation is possible by
the proposed method even when the Maxwell model is added to the joint.
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Figure 10. Comparison of integration error
(Maxwell model)
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Figure 11. Comparison of computational time
(Maxwell model)

8 CONCLUSIONS
In this study, we investigated a high-speed and stable dynamic calculation method for soft robot
systems containing viscoelastic bodies such as rubber and resin. The viscoelastic bodies were ap-
proximated by finite rigid body segments, and they were connected by joints and linear viscoelastic
elements such as the Voigt model and Maxwell model to express the viscoelastic properties. Then,
the recursive dynamics algorithm was used to speed up the calculation, and the generalized-α
method was used to stabilize the numerical integration. In this paper, we examined how to incor-
porate the Maxwell model into recursive dynamics algorithm and the generalized-α method, and
proposed a new method. We applied the proposed method to a 2-link manipulator composed of
rubber links and confirmed the effectiveness of the proposed method. In our future work, we will
extend the proposed method to the generalized Maxwell model as shown in Fig. 1 (c) in order to
reproduce the actual behavior of the viscoelastic body more accurately.
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ABSTRACT

The focus of this work is on optimal control in redundant coordinates with a special
attention to the boundary constraints that arise in this context. Due to the similarity
of the optimization problem of optimal control to the Lagrangian formalism of clas-
sical mechanics, this is considered first. Once the mechanical problem of the bound-
ary conditions in redundant coordinates has been discussed, the knowledge gained
is transferred to the optimal control problem in order to solve the problem in redun-
dant coordinates. Finally, for each section the equivalence of the problem in minimal
coordinates and redundant coordinates is shown by numerical results.

Keywords: Optimal control, boundary value problems, multibody dynamics

1 INTRODUCTION
Optimal control contains a large field of applications, from the optimal control of economical or
chemical processes to the optimal control of robots or satellites. The latter ones can be summa-
rized to mechanical systems and represent the focus of attention within this work.
There are several methods to describe the behaviour of the systems, the two most frequently cho-
sen being the description of the complete system in minimal or redundant coordinates. However,
depending on the choice of the description of the system, different types of mathematical systems
of equations arise. As is well known, the description of the system in minimal coordinates yields a
system of ordinary differential equations (ODEs), whereas the description of the system in redun-
dant coordinates yields a system of differential algebraic equations (DAEs) for the equations of
motion. Of course, both systems of equations describe the same motion of the mechanical system.
Since the equations of motion are the constraints in the optimal control problem of the mechanical
system, their description plays an essential role in the formulation of the optimal control problem.
While the analytical and numerical solution of the optimal control problem in minimal coordinates
can be considered as already well researched, this is not yet true for the description in redundant
coordinates. However, since finding minimal coordinates can be difficult and in the worst case
impossible, the focus of the present work lies on using DAEs as state equations in the optimal
control problem. Due to the parallels between the Lagrangian formalism of classical mechanics
and the optimization problem of optimal control, the Lagrangian formalism will be considered
first. Subsequently, the obtained knowledge is applied to the optimal control problem, with special
attention to the boundary constraints to be defined.
To keep it short and simple, the general approach will be illustrated with the example of a physical
pendulum on a slide depicted in Figure 1.

2 CONSTRAINED MECHANICS AND THE LAGRANGIAN FORMALISM
In this section the boundary value problem (BVP) of the Lagrangian formalism will be consid-
ered with a special attention to the boundary conditions arising in redundant coordinates. Before
starting with the description of the BVP in redundant coordinates, however, we will briefly discuss
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the BVP in minimal coordinates. Once the procedure is known, the BVP is derived in redun-
dant coordinates and the problems which arise are discussed. Thereupon, a simple but promising
way to solve the mechanical BVP in redundant coordinates is described. The equivalence of both
boundary value problems under consideration is illustrated with a numerical example.

2.1 The mechanical BVP in minimal coordinates
Let I ∈ [t0, t f ] be a time interval, q : I → M be the minimal coordinates on the configuration
manifold M := {q ∈ R2 |q1 = x1, q2 = x6} of the system at hand (Fig. 1), and T M be the
tangent bundle, see for example [2]. Then the Lagrangian L : T M → R is defined by

L(q) = T (q, q̇)−V (q) =
1
2

q̇agabq̇b −V (q)

with T : T M →R being the kinetic energy, V : M →R being the potential energy and gab being
the metric tensor, better known as mass matrix. Finally let P ∈ M ×T ∗M be the phase space of
the mechanical system. Then using Hamilton’s principle, the mechanical BVP is described by the
optimization problem

Problem 1. Mechanical BVP in minimal coordinates (MBVPM)
Find the extremal curve γ : I → P given by the action integral

SM(q) =
∫ t f

t0
L(q, q̇) dt (1)

Using Livens principle, see [3], [4], one may also set the equivalent problem to (1) by

Problem 2. Extended mechanical BVP in minimal coordinates (MBVPML)
Find the extremal curve γ : I → P given by the action integral

SM(q,v, p) =
∫ t f

t0
L(q,v)− pa(va − q̇a) dt (2)

with v ∈ T M and and p ∈ T ∗M .

Taking the variation of (2) yields

δSM(q,v, p) =
∫ t f

t0
(
∂L(q,v)

∂va − pa)δva +(
∂L(q,v)

∂qa )δqa +(q̇a − va)δ pa + paδ q̇a dt (3)

Applying the integration by parts
∫ t f

t0
paδ q̇a dt = [paδqa]

t f
t0 −

∫ t f

t0
ṗaδqa dt (4)

x1

x2

x3

x4

x5

x6

m1,2l1

m2,2l2

Figure 1. Multibody system of a physical pendulum on a moving slide taken from [1].
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and inserting the Legendre transformation resulting from the variation δva, which yield the Leg-
endre transformed function HM : T ∗M → R of the Lagrangian,

HM =
1
2

pagab pb +V (q) (5)

finally yields

δSM(q, p) =
∫ t f

t0
(− ṗa −

∂HM(q, p)
∂qa )δqa +(q̇a − ∂HM(q, p)

∂ pa
)δ pa dt +[paδqa]

t f
t0 (6)

Now, imposing the stationary condition δSM(q, p) = 0, one obtains the necessary optimality con-
ditions

q̇a =
∂HM(q, p)

∂ pa

ṗa =−∂HM(q, p)
∂qa

(7)

along with the boundary conditions

0 = [paδqa]
t f
t0 (8)

Note that, at this stage, we do not impose the common end-point conditions on δqa, but rather
keep the boundary conditions leading to a BVP comprised of (7) and (8).

2.2 The mechanical BVP in redundant coordinates
Let x : I → M be the description of the mechanical system in redundant coordinates and thus
M := {x ∈ R6|gr(x) = 0}. Then the Lagrangian in redundant coordinates may be defined by

L̂(x,y) = T (x, ẋ)−V (x)− yrgr(x) =
1
2

ẋiĝiaẋ j −V (x)− yrgr(x) (9)

In analogy to the last section we obtain

Problem 3. Extended mechanical BVP in redundant coordinates (MBVPRL)
Find the extremal curve γ : I → P given by the action integral

SM(x, v̂, p̂,y) =
∫ t f

t0
L̂(x, v̂,y)− p̂i(v̂i − ẋi) dt (10)

Following the steps which led to (3) - (6), we obtain

δSM(x, p̂,y) =
∫ t f

t0
(
∂ Ĥ(x, p̂,y)

∂xi − ˙̂pi)δxi +(ẋi − ∂ Ĥ(x, p̂,y)
∂ p̂i

)δ p̂i +gr(x)δyr dt +
[
p̂iδxi]t f

t0
(11)

where the Hamiltonian ĤM in redundant coordinates is given by

ĤM(x, p̂,y) = p̂iĝi j p̂ j +V (x)+ yrgr(x) (12)

Thus, the mechanical BVP in redundant coordinates is described by the necessary optimality con-
ditions

ẋi =
∂ ĤM(x, p̂,y)

∂ pi

˙̂pi =−∂ ĤM(x, p̂,y)
∂xi

0 =
∂ ĤM(x, p̂,y)

∂yr

(13)
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along with the boundary conditions

0 =
[
p̂iδxi]t f

t0
(14)

However, due to the constraints gr(x) = 0 associated with (13)3, the variations δx are not inde-
pendent and shall be further investigated with respect to the boundary conditions. Since (13) gives
rise to index-3 DAEs, see [5], it is well known, that the implicit definition of yr is given by

d2

dt2 (g
r(x)) = Gr(x, p,y) (15)

However, since either xi or pi is properly defined on the boundary, yr is in general unknown on
the boundaries, until the solution is known. Thus gr(x(t)) = 0 holds on the boundaries, which
reduces the independent redundant coordinates to a and thus only a boundary conditions may be
defined with respect to the variation of x on the boundaries. To answer the question of properly set
admissible boundaries, it is helpful to decompose the redundant coordinates into their normal and
tangential parts. This is to happen in the following section.

2.2.1 Decomposed vector spaces
Let BV̂p

and BV̂ ∗
p

be the bases of the local vector spaces V̂p and V̂ ∗
p at point p on M in redundant

coordinates. Let further BTpM and BT ∗
p M be the bases of the tangential spaces TpM and T ∗

p M ,
and BNpM and BN ∗

p M be the bases of the normal spaces NpM and N ∗
p M at p. Now let’s

assume, the mapping nr(x) = const. exists and thus gr(ns(x)) = 0 holds. Since the constraints
gr(x) are known in redundant coordinates, following [1] , see also [6], [7] and [8], a straight
forward calculation yields the metric tensors associated with the normal and tangential spaces,
(ĝrs, ĝrs), and (gab,gab), respectively, along with the Jacobians

∂xi

∂nr : V̂p → NpM ,
∂nr

∂xi : V̂ ∗
p → N ∗p M , (16)

∂xi

∂qa : V̂p → TpM ,
∂qa

∂xi : V̂ ∗
p → T ∗p M , (17)

Now let the bases of the decomposed local vector space Vp := NpM ∪TpM and its dual space
V ∗

p := N ∗p M ∪T ∗p M be defined by BVp and BV ∗
p
, whereat by definition

BTpM ⊥ BNpM , BT ∗
p M ⊥ BN ∗

p M (18)

holds. This leads to the mappings

∂x j

∂ zi : V̂p → NpM ∪TpM (19)

∂ z j

∂xi : V̂ ∗
p → N ∗p M ∪T ∗p M (20)

where the coordinates zi = {nr,qa} and momenta pi = {pr, pa} have been introduced.

Remark. Velocity components in normal directions
Since

dgr(x)
dt

=
∂gr(x)

∂ns ṅs = 0 (21)

and ∂gr(x)
∂ns 6= 0 in general, it can be seen that ṅs = 0 holds.
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2.2.2 The boundary conditions in redundant coordinates
Using the relationships

δxi =
∂xi

∂ z j δ z j =
∂xi

∂nr δnr +
∂xi

∂qa δqa (22)

p̂i =
∂ z j

∂xi p j =
∂nr

∂xi pr +
∂qa

∂xi pa (23)

inserting them into (11) and making use of ṅr = pr = 0 leads to the necessary optimality conditions
in decomposed coordinates given by

q̇a =
∂HM(q,n, p)

∂ pa
(24a)

0 =−1
2

pa
∂gab

∂nr pb −
∂V
∂nr − yr (24b)

ṗa =−∂HM(q,n, p)
∂qa (24c)

0 = gr(x) (24d)

with the Hamiltonian being defined by (5). For the boundary conditions follow

0 =

[
pi

∂xi

∂nr δnr
]t f

t0

+

[
pi

∂xi

∂qa δqa
]t f

t0

= [prδnr]
t f
t0 +[paδqa]

t f
t0

= [paδqa]
t f
t0

(25)

since pr = 0 everywhere.

Remark. The implicit definitions of yr

It can be seen from (24b) that r ODEs in redundant coordinates correspond to the implicit defini-
tion of yr.

Remark. The duality of the derivative of the constraints and the variation for δnr

A straight forward calculation yields

d2

dt2 (g
r(x)) = Gr(x, p̂,y) = grsGs(q,n, p,y) (26)

with

Gr(q,n, p,y) =−1
2

pa
∂gab

∂nr pb −
∂V
∂nr − yr (27)

Writing (25) in terms of redundant coordinates finally yields the proper BVP in redundant coordi-
nates, defined by the necessary optimality conditions (13) and the boundary conditions

0 =

[
p̂i

∂xi

∂qa δqa
]t f

t0

(28)

Remark. Setting boundary conditions by using Lagrangian multipliers
The natural boundary conditions (28) may also be augmented with suitable end-point conditions
by using Lagrangian multipliers in the action integral. For example, this leads to

SM(·) =
∫ t f

t0
L(q, q̇) dt +µ0

a (q
a(t0)− q̄a

0)+µN
a (q

a(t f )− q̄a
N) (29)

and

SM(·) =
∫ t f

t0
L(x, ẋ,y) dt +µ0

a
∂qa

∂xi (x
i(t0)− x̄i

0)+µN
a

∂qa

∂xi (x
i(t f )− x̄i

N) (30)

where q̄a
0, q̄

a
N and x̄i

0, x̄
i
N , respectively, are prescribed coordinates.
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2.3 Numerical example of the mechanical BVP
In the following, the BVP of the mechanical system depicted in Fig. 1 is solved in minimal
coordinates and redundant coordinates to show the equivalence of the BVPs numerically. As can
be observed from Fig. 1, the constraints are specified by

g1(x) = x2 (31a)

g2(x) = x3 (31b)

g3(x) = x1 − x4 + l2 sin(x6) (31c)

g4(x) = x2 − x5 + l2 cos(x6) (31d)

Let the potential energy in redundant and minimal coordinates be defined by

V (x) =−m1gx2 −m2gx5, V (q) =−m2gl2 cos(q2) (32)

with g being the gravitational constant. Let further the kinetic energy be given by

T (x, p) =
1
2

piĝi j p j, T (q,n, p) =
1
2

pagab pb (33)

with the metric tensors

ĝi j = M̂ =




m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m1(2l1)2

12 0 0 0
0 0 0 m2 0 0
0 0 0 0 m2 0
0 0 0 0 0 m2(2l2)2

12




(34)

and

gab = M =

[
m1 +m2 m2l2 cos(q2)

m2l2 cos(q2) 4
3 m2l2

2

]
(35)

Applying the midpoint rule to the differential part, with step size h = tn+1 − tn, finally yields the
discrete necessary optimality conditions in redundant coordinates as

xi
n+1 − xi

n = h ∂HM

∂ p̂
n+ 1

2
i

; n = {0,1, ...,N −1}

p̂n+1
i − p̂n

i = −h ∂HM

∂xi
n+ 1

2

; n = {0,1, ...,N −1}

0 = gr(xn); n = {0,1, ...,N}

(36)

along with the boundary conditions

∂qa
0

∂xi
0
(xi

0 − x̄i
0)δ µ0

a = 0; ∂qa
N

∂xi
N
(xi

N − x̄i
N)δ µN

a = 0

(
∂xi

0
∂qa

0
p̂0

i −µ0
a )δqa

0 = 0; (
∂xi

N
∂qa

N
p̂N

i −µN
a )δqa

N = 0
(37)

Since the implicit definition of yr can’t be done properly on the boundary by the discrete system of
ODEs, the implicit definitions are enforced by making use of (15). Thus, the additional boundary
conditions

Gr(x0, p̂0,y0) = 0; Gr(xN , p̂N ,yN) = 0 (38)
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x̄(t0) = [0, 0, 0, 1, 0, π
2 ]

T

x̄(t f ) = [0, 0, 0, −1, 0, −π
2 ]

T

(m1,m2) = (1,1)
(l1, l2) = (1,1)

T = 1.8
N = 100

Table 1. Specified boundary conditions as well as physical and geometric parameters of the
mechanical system.
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Figure 2. Solutions of the mechanical boundary value problem defined by Table 1. Here the
positions (left) and momenta (center) are shown in redundant coordinates. The dual quantities
yr in minimal coordinates are calculated by making use of (24b)

are enforced which ensure the definition of yr on the boundaries.

For the discrete necessary optimality conditions in minimal coordinates follows

qa
n+1 −qa

n = h ∂HM

∂ p
n+ 1

2
a

; n = {0,1, ...,N −1}

pn+1
a − pn

a = −h ∂HM

∂qa
n+ 1

2

; n = {0,1, ...,N −1} (39)

along with the boundary conditions

(qa
0 − q̄a

0)δ µ0
a = 0; (qa

N − q̄a
N)δ µN

a = 0
(p0

a −µ0
a )δqa

0 = 0; (pN
a −µN

a )δqa
N = 0

(40)

The boundary conditions chosen for the example, the length and mass of the slide and the pendu-
lum as well as the length of the time interval I ∈ [0, T ] and the number of discrete time intervals,
N, is shown in Table 1

Comparing the solutions depicted in Fig. 2, it can be seen that the BVPs are indeed equivalent.

Fig. 3 also shows a sequence of the solution of the mechanical boundary value problem.

3 OPTIMAL CONTROL OF CONSTRAINED MECHANICAL SYSTEMS USING RE-
DUNDANT COORDINATES

In this section the BVP arising from the optimal control problem shall be treated by using redun-
dant coordinates. Therefore, the well known optimal control problem in minimal coordinates will
be discussed briefly to show the close connection between the Lagrange formalism in the mechan-
ical BVP and the optimal control problem. Afterwards the necessary optimality conditions for the
optimal control problem in redundant coordinates proofed in [9] shall be viewed. The boundary
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Figure 3. Snapshots of the motion resulting from the BVP with data given in Table 1.

conditions for the redundant coordinates will be described and finally the equivalence between the
BVPs in terms of redundant and minimal coordinates will be shown with a numerical example.

3.1 The optimal control BVP in minimal coordinates
Let the controlled equations of motion be defined by (7) together with the control forces u : I →R2

and thus

q̇i =
∂HM

∂ pa
, ṗa =−∂HM

∂qa +ua (41)

Then the standard optimal control problem reads

Problem 4. Optimal control problem in minimal coordinates (OCBVPM)
Minimize

SOC(q, p,u) =
∫ t f

t0
C(q, p,u) dt (42)

subject to

q̇a =
∂HM

∂ pa

ṗa =−∂HM

∂qa +ua

(43)

Augmenting the objective function of the optimization problem with the dynamic constraints (43)
yields

Problem 5. Augmented optimization problem in minimal coordinates (OCBVPML)
Extremize

SOC(q, p,u,λ q,λp) =
∫ t f

t0
C(q, p,u)+λ q

a

(
q̇a − ∂HM

∂ pa

)
+λ a

p

(
ṗa − (−∂HM

∂qa +ua)

)
dt (44)

=
∫ t f

t0
λ q

a q̇a +λ a
p ṗa −HOC(·) dt (45)

Here, the Hamiltonian of the optimal control problem

HOC(q, p,u,λ q,λp) = λ q
a

∂HM

∂ pa
+λ a

p(−
∂HM

∂qa +ua)−C(q, p,u) (46)
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hast been introduced, see e.g. [8], [10] , [11]. Following the Lagrangian formalism by taking the
variation and then applying integration by parts for the terms λ q

i δ ẋi and λ a
p δ ṗa finally yields

δSOC(q, p,u,λ q,λp) =
∫ t f

t0
δλ q

a

(
q̇a − ∂HOC(·)

∂λ q
a

)
+δλ a

p

(
ṗa −

∂HOC(·)
∂λ a

p

)

+δqa(−λ̇ q
a − ∂HOC(·)

∂qa )+δ pa(−λ̇ a
p −

∂HOC(·)
∂ pa

)+δua
∂HOC(·)

∂ua
dt

+[λ q
a δqa]

t f
t0 +

[
λ a

p δ pa
]t f

t0
(47)

Thus, the necessary optimality conditions using minimal coordinates yield

q̇a =
∂HOC(·)

∂λ q
a

, λ̇ q
a =−∂HOC(·)

∂qa

ṗa =
∂HOC(·)

∂λ a
p

, λ̇ a
p =−∂HOC(·)

∂ pa

0 =
∂HOC(·)

∂ua

(48)

along with the boundary conditions

0 = [λ q
a δqa]

t f
t0 , 0 =

[
λ a

p δ pa
]t f

t0
(49)

3.2 The necessary optimality conditions in redundant coordinates
Using redundant coordinates for the controlled equations of motion, the optimal control problem
under investigation is given by

Problem 6. Optimal control problem in redundant coordinates (OCBVPR)
Minimize

ŜOC(x, p̂,y, û) =
∫ t f

t0
C(x, p̂,y, û) dt (50)

subject to

ẋi =
∂ ĤM

∂ p̂i

˙̂pi =−∂ ĤM

∂xi + ûi

0 = gr(x)

(51)

with û : I →R6. Again augmenting the objective function with the dynamic constraints (51) yields

S̄OC(x, p̂,y, û, λ̂ q, λ̂p,η) =
∫ t f

t0
C(x, p̂,y,u)+ λ̂ q

i (ẋ
i − ∂ ĤM

∂ p̂i
)+ λ̂ i

p( ˙̂pi − (−∂ ĤM

∂xi + ûi))+ηrgr(x) dt

=
∫ t f

t0
λ̂ q

i q̇i + λ̂ i
q

˙̂pi − H̄OC(x, p̂,y, û, λ̂ q, λ̂p,η) dt (52)

with

H̄OC(x, p̂,y, û, λ̂ q, λ̂p,η) = λ̂ q
i

∂ ĤM

∂ p̂i
+ λ̂ i

p(−
∂ ĤM

∂xi + ûi)−ηrgr(x)−C(x, p̂,y,u) (53)
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One might now again demand

δ S̄OC(x, p̂,y, û, λ̂ q, λ̂p,η) = 0

to get the necessary optimality conditions. However, it is proofed in [9] (see also [10]), that this
approach is not feasible. Instead, following [9], the proper necessary optimality conditions for the
optimal control problem in redundant coordinates are given by

ẋi =
∂ ĤOC(·)

∂ λ̂ q
i

,
˙̂λ q

i =−∂ ĤOC(·)
∂xi

˙̂pi =
∂ ĤOC(·)

∂ λ̂ i
p

,
˙̂λ i

p =−∂ ĤOC(·)
∂ p̂i

0 = gr(x), 0 =
∂ ĤOC(·)

∂yr

0 =
∂ ĤOC(·)

∂ ûi

(54)

with the Hamiltonian being

ĤOC(x, p̂,y, û, λ̂ q, λ̂p,η) = λ̂ q
i

∂HM

∂ p̂i
+ λ̂ i

p(−
∂HM

∂xi + ûi)−ηrGr(x, p̂,y, û)−C(x, p̂,y, û) (55)

whereat Gr(x, p̂,y, û) corresponds to the implicit definition of the dual normal quantity yr. For
index-3 DAEs one has

Gr(x, p̂,y, û) =
d2gr(x)

dt2 (56)

3.3 The optimal control problem in redundant coordinates
Even though the proper necessary optimality conditions in redundant coordinates are given by [9]
(see also [10]), the treatment of the boundary conditions for (OCBVPR) still demands further elab-
oration. Comparing (53) and (55), it can be seen that the natural boundary conditions nevertheless
arise from integration by parts:

∫ t f

t0
λ̂ q

i δ ẋi dt =
[
λ̂ q

i δxi
]t f

t0
−
∫ t f

t0

˙̂λ q
i δxi dt (57)

∫ t f

t0
λ̂ i

pδ ˙̂pi dt =
[
λ̂ i

pδ pi

]t f

t0
−
∫ t f

t0

˙̂λ i
pδ p̂i dt (58)

and thus the proper optimal control BVP is initially given by the necessary optimalty conditions
(54) along with the boundary conditions

[
λ̂ q

i δxi
]t f

t0
= 0

[
λ̂ i

pδ p̂i

]t f

t0
= 0 (59)

However, since pr = 0 and nr(x) = const. has to hold everywhere and especially on the boundaries,
the corresponding variations have to vanish. Making use of (19) and (20), the boundary conditions
in redundant coordinates reduce to

0 =

[
λ̂ q

i (
∂xi

∂nr δnr +
∂xi

∂qa δqa)

]t f

t0

= [λ q
r δnr +λ q

a δqa]
t f
t0 = [λ q

a δqa]
t f
t0 (60)

0 =

[
λ̂ i

p(
∂nr

∂xi δ pr +
∂qa

∂xi δ pa)

]t f

t0

=
[
λ r

pδ pr +λ a
p δ pa

]t f

t0
=
[
λ a

p δ pa
]t f

t0
(61)

Accordingly, the proposed form of the optimal control BVP in redundant coordinates is given by
the necessary optimality conditions (54) together with the boundary conditions

0 =

[
λ̂ q

i
∂xi

∂qa δqa
]t f

t0

0 =

[
λ i

p
∂qa

∂xi δ pa

]t f

t0

(62)
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3.4 Numerical example of the optimal control BVP
Let the cost functionals be defined by

C(x, p̂,y, û) =
1
2

ûiĝi jû j, C(q, p,u) =
1
2

uagi jua

with the metric tensors given by

ĝi j = M̂−1, gab = M−1

Using once more the midpoint rule for the discretization of the differential equations in the neces-
sary optimality conditions in term of redundant coordinates yields

xi
n+1 − xi

n = h ∂ ĤOC

∂ λ̂
q,n+ 1

2
i

; n = {0,1, ...,N −1}

pn+1
i − pn

i = h ∂ ĤOC

∂ λ̂ i
p,n+ 1

2

; n = {0,1, ...,N −1}

λ̂ q,n+1
i − λ̂ q,n

i = h(− ∂ ĤOC

∂xi
n+ 1

2

); n = {0,1, ...,N −1}

λ̂ i
p,n+1 − λ̂ i

p,n = h(− ∂ ĤOC

∂ p̂
n+ 1

2
i

); n = {0,1, ...,N −1}

0 = gr(xi
n); n = {0,1, ...,N}

0 = ∂ ĤOC(·)
∂yn

r
; n = {0,1, ...,N}

0 = ∂ ĤOC(·)
∂ ûn

i
; n = {0,1, ...,N}

(63)

As already done in the context of the mechanical BVP, the boundary conditions may also be
enforced by Lagranian multipliers. Consequently, we get

∂qa
0

∂xi
0
(xi

0 − x̄i
0)δ µ0

a = 0; ∂qa
N

∂xi
N
(xi

N − x̄i
N)δ µN

a = 0
∂xi

0
∂qa

0
(p0

i − p̄0
i )δνa

0 = 0; ∂xi
N

∂qa
N
(pN

i − p̄N
i )δνa

N = 0

(
∂xi

0
∂qa

0
λ q,0

i −µ0
a )δqa

0 = 0; (
∂xi

N
∂qa

N
λ q,N

i −µN
a )δqa

N = 0

(
∂qa

0
∂xi

0
λ i

p,0 −νa
0 )δ p0

a = 0; (
∂qa

N
∂xi

N
λ i

p,N −νa
N)δ pN

a = 0

(64)

together with the implicit definition of the dual quantities yr on the boundaries already known from
the mechanical BVP given by (56).

In minimal coordinates, the discrete necessary optimality condition simplify to

qa
n+1 −qa

n = h ∂HOC

∂λ
q,n+ 1

2
a

; n = {0,1, ...,N −1}

pn+1
a − pn

a = h ∂HOC

∂λ a
p,n+ 1

2

; n = {0,1, ...,N −1}

λ q,n+1
a −λ q,n

a = h(− ∂HOC(·)
∂qa

n+ 1
2

); n = {0,1, ...,N −1}

λ i
p,n+1 −λ i

p,n = h(− ∂HOC(·)
∂ p

n+ 1
2

i

); n = {0,1, ...,N −1}

0 = ∂HOC(·)
∂un

a
; n = {0,1, ...,N}

(65)

along with the boundary conditions

(qa
0 − q̄a

0)δ µ0
a = 0; (qa

N − q̄a
N)δ µN

a = 0;
(p0

a − p̄0
a)δνa

0 = 0; (pN
a − p̄N

a )δνa
N = 0;

(λ q,0
a −µ0

a )δqa
0 = 0; (λ q,N

a −µN
a )δqa

N = 0;
(λ a

p,0 −νa
0 )δ p0

a = 0; (λ a
p,N −νa

N)δ pN
a = 0;

(66)
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x̄(t0) = [0, 0, 0, 0, 1, 0]T

p̄(t0) = [0, 0, 0, 0, 0, 0]T

x̄(t f ) = [0, 0, 0, 0.7071, 0.7071, π
4 ]

T

p̄(t f ) = [0, 0, 0, 0, 0, 0]T

(m1,m2) = (1,1)
(l1, l2) = (1,1)

T = 5
N = 100

Table 2. Specified boundary conditions as well as physical and geometric parameters of the
mechanical system in the optimal control problem
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Figure 4. Solutions of the optimal control problem boundary value problem defined by Table
2. Here the positions (left) and momenta (center) are shown in redundant coordinates while
the redundant controls (right) are shown in minimal coordinates.

The boundary conditions chosen for the optimal control example, the length and mass of the slide
and the pendulum as well as the length of the time interval I ∈ [0, T ] and the number of discrete
time intervals, N, is shown in Table 2.

Comparing the solutions depicted in Fig. 4, it can be seen that the two BVP under consideration
are indeed equivalent.

Fig. 5 also shows a sequence of the solution of the optimal control boundary value problem.

4 CONCLUSION
In this paper, the boundary value problem of the optimal control problem in redundant coordinates
was considered in more detail. Due to the mathematical similarity of the Lagrange formalism of
classical mechanics and the optimal control problem, the first step was to consider the boundary
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Figure 5. Sequence of the motion of the controlled mechanical system defined by the optimal
control BVP with the data given in Table 2.
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value problem in redundant coordinates in the simplified framework of classical mechanics. After
the requirements on the variations on the boundary, which occur due to the algebraic constraints
imposed on the redundant coordinates, were discussed on the mechanical level, the knowledge
gained from this was transferred to the optimal control problem. Here, the challenging optimal
control problem in redundant coordinates was first discussed and the correct necessary optimality
conditions were referred to. Subsequently, with the help of the clear separation of the coordinates
into normal and tangential parts, which was already known from the mechanical boundary value
problem, the optimal control problem was formulated in redundant coordinates. Finally, it was
verified by means of a numerical example that the optimal control problem formulated in both
redundant and minimal coordinates leads to equivalent numerical results.
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[9] Roubíček, T., Valášek, M.: Optimal control of causal differential–algebraic systems. J. Math.
Anal. Appl. 269 (2002) 616–641

[10] Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin, Boston (2011) ISBN
978-3-11-024995-8.

[11] Betsch, P., Becker, C.: Conservation of generalized momentum maps in mechanical optimal
control problems with symmetry. Int. J. Numer. Meth. Engng 111(2) (2017) 144–175 doi:
10.1002/nme.5459.

https://doi.org/10.3311/ECCOMASMBD2021-130

357



10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS

Section
SLENDER STRUCTURES

358



ECCOMAS Thematic Conference on Multibody Dynamics
December 12 - 15, 2021, Budapest, Hungary

One-Dimensional Modelling of Developable Elastic Strips
by Geometric Constraints and their Link to Surface Isometry

Benjamin Bauer1,2, Michael Roller1, Joachim Linn1, Bernd Simeon2

1 Mathematics for the Digital Factory
Fraunhofer Institute for Industrial Mathematics (ITWM)

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
[benjamin.bauer, michael.roller, joachim.linn]@itwm.fraunhofer.de

2 Felix-Klein-Zentrum for Mathematics
TU Kaiserslautern

Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
simeon@mathematik.uni-kl.de

ABSTRACT

The goal of this paper is to introduce a kinematical reduction for the structural model
of Kirchhoff-Love shells with developable base surfaces. The dimensional reduction
to a curve and a vector field along it decreases the involved number of degrees of
freedom. Local coordinates in form of a relatively parallel frame allow us to simplify
the geometric constraints occurring in the model and prevent instabilities caused by
points or segments of zero curvature. The core of this work is to prove equivalence of
these requirements and the isometry of the transformation. Subsequently, we derive
the one-dimensional bending energy functional for rectangular strips. In order to
compute the equilibrium state of a static shell, we minimise a penalised version of this
functional over the finitely many degrees of freedom stemming from an isogeometric
discretisation. Several example strips clamped at both ends illustrate the feasibility of
this approach.

Keywords: developable surfaces, Bishop frame, Kirchhoff-Love shells, isogeometric
discretization, energy method.

1 INTRODUCTION
Thin-walled structural parts, denoted as shell structures in Computational Mechanics, frequently
appear in engineering designs due to their special mechanical properties (cf. [1, sec. 1.1]). These
are mainly determined by their geometric characteristics: Two parts, manufactured from the same
material and subject to the same external loads, can be designed geometrically to react either very
stiff or easily deformable.

Classical shell theories [2] aim at reducing both involved degrees of freedom and numerical costs
by modelling sheet-like objects via their centre surface. Developable shell structures may be flat-
tened by bending deformations, without any changes in the surface metric that imply high mem-
brane stresses. Therefore, such surface geometries are good candidates for applications which
demand highly flexible parts.

Flexible flat cables (FFCs) are prototypical examples of such structures and important components
in computer hardware or consumer electronics products. Large spatial deformations of FFCs occur
e.g. during the (dis-)assembly of such products. Their simulation is an essential part of a digitalized
product development, as well as digital product lifecycle management.

Within the last century, several approaches to specialise Kirchhoff-Love type shell models for
developable surfaces occurred [3]. Sadowsky [4] and Wunderlich [5] studied the bending energy
of a narrow Kirchhoff-Love strip and integrated it along the direction of zero curvature, thereby
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reducing it to the length dimension only. Starostin and van der Heijden [6], as well as Dias and
Audoly [7] recently proposed one-dimensional models for ribbons.

In our work we take first steps to investigate the suitability of specialized ruled surface shell mod-
els of this type as computational models for applications as sketched above for FFC. In section
2, we consider the geometry of developable surfaces and justify geometric constraints that model
isometric deformations. This generalises the approach proposed in [6] to base curves that pos-
sess arbitrary geodesic curvature and may exhibit points or segments of vanishing total curvature.
Furthermore, we inspect surface singularities occurring from self-penetration of matter closer. A
relatively parallel frame [8] (in literature also rotation minimising frame, parallel transported frame
or Bishop frame) allows to decompose the director of the developable and thereby ruled surface.
Section 3 proves the equivalence of our geometric model and vanishing of the surface membrane
energy. Thus, the stored energy function of the transformations inspected consists only of the
bending energy. We analytically integrate this energy over the second surface parameter and end
up with a result similar to [5] in section 4. Section 5 explains the numerical treatment of the
optimisation process: we address the non-linear constraints by a penalty method and employ an
interior point method [9] to compute the stable equilibrium state. Finally, we display and discuss
our results in section 6.

2 GEOMETRIC MODEL
Every developable surface is ruled, that means it can be represented by a regular base curve (also
called directrix) γγγ and a director vector field d in the form

φφφ : (u,v) 7→ γγγ(u)+ vd(u). (1)

This representation scheme is illustrated in Figure 1. Conversely, a ruled surface is developable if
and only if the determinant of curve tangent t, director and director derivative det[t,d, ḋ] vanishes
everywhere along the base curve [10, chap. 5.5]. The dotted derivative stresses that u is not
necessarily an arc-length parameter, following the convention of [10], whereas a prime as in γγγ ′
shall always denote derivatives with respect to the arc-length parameter s of γγγ .

We regard strips that possess dedicated (local) length, width and thickness dimensions. This
means, we may assume γγγ to match the centre-line of φφφ such that the width, defined as cross
section in the normal plane to t, is constantly 2w. Similarly, we define the thickness normal to φφφ
and assume it to constantly be 2t. The capital letter L shall denote the length of γγγ and emphasize
the geometric characteristics L� w� t of the strip.

Developable surfaces may exhibit singularities in form of neighboured rulings intersecting each
other as depicted in Figure 2, which may be seen as a violation of the impenetrability of matter. All
these intersection points form an (in general not continuous) curve, called edge of regression (cf.
[10, chap. 5.1]). Characteristically, the surface normal vanishes in these singular points (u∗,v∗)
such that

detA(u∗,v∗) = ‖∂uφφφ(u∗,v∗)×∂vφφφ(u∗,v∗)‖2 = 0, (2)

where AAA : (u,v) 7→
[
∂αφφφ(u,v) ·∂β φφφ(u,v)

]
α,β∈{u,v} is the metric tensor and ∂uφφφ , ∂vφφφ denote the

tangent vectors of the surface in φ(u,v) along the isoparametric lines (constant v or u, respectively).

Note that if director and curve tangent are parallel, the surface normal reads v(ḋ× d). Hence,
then there is a singularity lying on γγγ . Thus, for regular surfaces, t and d need to be linearly
independent. Furthermore, without loss of generality, we may scale d such that its component
normal to γγγ is of unit length, i.e. ‖d− (d · t)t‖ ≡ 1. The symbol ≡ means pointwise equality for
all parameters u. With this, the parameter domain of φφφ becomes rectangular and we may write
φφφ : [0,L]× [−w,w]→ R3.
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2.1 Local Frame Coordinates
In order to rigorously define the curvature terms in the subsequent paragraphs, we will assume
the necessary smoothness γγγ ∈ C 2 and d ∈ C 1 throughout the whole paper, where C k denotes the
space of k-times continuously differentiable functions. This provides existence [11] of a relatively
parallel frame (t,m1,m2) along γγγ with generalised Frenet equations

d
du




t
m1
m2


≡




k1 k2
−k1
−k2






t
m1
m2




and enables us to decompose the director as

d≡ d0t+d1m1 +d2m2 (3)

with coordinate functions d0,d1,d2 with respect to the relatively parallel frame.

Using the curvature components k1,k2 of the frame, we may write

det[t,d,
...
d]≡ d1

( ...
d2 +d0k2‖

...
γγγ‖
)

︸ ︷︷ ︸
≡:π(2)

G

−d2

( ...
d1 +d0k1‖

...
γγγ‖
)

︸ ︷︷ ︸
≡:π(1)

G

. (4)

As det[t,d, ḋ]≡ 0, the tangent plane of φφφ is spanned by t and d. Then the unit normal vector of φφφ
reads ηηη(·,v)≡ t×d≡−d2m1 +d1m2 independently of v ∈ [−w,w].

2.2 Rectangular Strips and Rectifying Developables
In the special case of rectangular strips, the surface φφφ matches the rectifying developable (RD) of
its centre-line γγγ , which is the envelope of planes spanned by tangent and Frenet binormal b. The
model of [6] exploits this representation such that the director reads d ≡ τ

κ t+b, where κ and τ
denote the Frenet curvature and torsion, respectively.

Since the definition of the RD requires an existing Frenet frame, we generalise this concept to
curves which are twice continuously differentiable. For this, we utilise three characteristic prop-
erties of the RD: φφφ is developable, γγγ is a geodesic on φφφ and the curve tangent and director are
pointwise linear independent [12, Proposition 4.1]. Note that we already treated the third condi-
tion above regarding regularity and that a geodesic line is characterised by having zero geodesic
curvature

κg ≡
det[

...
γγγ,

......
γγγ,ηηη ]

‖ ...γγγ‖3
≡ k1d1 + k2d2

everywhere [13].

Figure 1: Representation of a helicoidal
strip as ruled surface with orange base curve
and greenly dashed rulings.

Figure 2: Intersection of a pair of neigh-
boured rulings in an orange point outside of
the strip.
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Thus, we get a system of geometric constraints

det[t,d,
...
d]≡ 0, κg ≡ 0, ‖d− (d · t)t‖ ≡ 1. (5)

If a ruled surface φφφ satisfies these conditions, we call it generalised rectifying developable (GRD).
Furthermore, the edge of regression restricts the surface width via the regularity condition (2) to
the well-known [6, sec. 2.1]

w < min
s∈[0,L]

|v∗(s)|= 1

maxs∈[0,L] |
...
d0(s)|

, (6)

or vice versa |
...
d0|< 1

w globally on [0,L].

2.3 Generalisation to Curved Bands
Next, we follow the spirit of [7] and admit a priori curved directrix in the reference configuration.
This means, we relax the requirement of γγγ being a geodesic and simply require the base curve
to maintain its geodesic curvature. Note that this is obviously necessary concerning isometric
transformations.

Consider the partial derivatives of φφφ which define a unique normal vector if and only if their
cross-product

‖φφφ u×φφφ v‖ ≡ ‖
...
γγγ‖+ v

...
d0− vκg‖

...
γγγ‖−d0κg‖

...
γγγ‖

does not vanish. This yields for the critical value v∗

v∗ ≡ ‖ ...γγγ‖
...
d0−κg‖

...
γγγ‖(1+d2

0)
∈ R∪{∞}.

The regularity condition (6) generalises to

∣∣∣
...
d0−κg‖

...
γγγ‖(1+d2

0)
∣∣∣< ‖

...
γγγ‖
w

. (7)

3 Isometry of the Model
In the previous section, we justify several geometric conditions for our model that ensure the
isometric deformation of a strip. Now we aim at rigorously proving equivalence between these
constraints and isometry. In order to differentiate between initial and deformed state, we indicate
belongingness to the initial configuration with a superset ◦ for all variables. For simplicity, we
assume that the initial state is planar here and generalise this statement later.

Proposition 3.1. Let φφφ ◦ be a planar surface described in the form (1), such that the director
satisfies the regularity condition (7) and the scaling condition ‖d◦− (d◦ · t◦)t◦‖ ≡ 1.

Then φφφ is an isometrically deformed state of φφφ ◦ if and only if φφφ is ruled and satisfies the following
properties:

(a) The deformed state φφφ is developable, i.e. det[t,d,
...
d]≡ 0.

(b) The geodesic curvature of the directrix is preserved, i.e. κg ≡ κ◦g .

(c) There is no change in the width of the strip, i.e. d2
1 +d2

2 ≡ 1.

(d) There is no tensile strain along γγγ , i.e. ‖ ...γγγ‖ ≡ ‖ ...γγγ◦‖.

(e) There is no penetration of matter, i.e. d0 satisfies (7).
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The subsequent proof establishes equivalence on the global level instead of proving necessity and
sufficiency separately. Only for two minor claims, we treat both sides consecutively (indicated by
“⇐” or “⇒”).

Proof. For the start, remember the Gaussian Theorema Egregium [14] after which Gaussian cur-
vature is preserved under isometric deformations. As φφφ ◦ is planar, φφφ must be developable and
therewith ruled if it is an isometrically deformed state. Therefore, φφφ may be parametrised in the
form (1) with decomposed director (3) for both sides of the claim.

As we regard a flat reference configuration, γγγ◦ is a plane curve. We may construct a frame
(t◦,m◦1,m◦2) from the curve tangent t◦ and the constant plane normal m◦2. Note that this frame
is a relatively parallel frame, but has only one non-zero curvature component k◦1 ≡: κ◦g , which is
the (geodesic) curvature of γγγ◦. This yields the representation

φφφ ◦ ≡ γγγ◦+ vd◦, d◦ ≡ d◦0t◦+m◦1.

We compute the expressions for the symmetric metric tensors A,A◦ and subtract them from each
other. The entries of the resulting difference tensor ∆A := A−A◦ may be written as polynomials
in v with coefficients x11,y1α ,zαβ : [0,L]→ R for α,β ∈ {1,2} defined via

∆A(u,v) =:
[

x11(u) v2 + y11(u) v+ z11(u) y12(u) v+ z12(u)
y12(u) v+ z12(u) z22(u)

]
.

The deformation from φφφ ◦ to φφφ is isometric if and only if this difference tensor vanishes globally
on [0,L]× [−w,w], especially for each v ∈ [−w,w]. This happens if and only if the six coefficient
functions x11,y1α ,zαβ are constantly zero. We consider one entry after the other in order to link
them to the properties (a)− (e) and immediately simplify the remaining coefficients.

“(d)” First consider z11 ≡ ‖
...
γγγ‖2−‖ ...γγγ◦‖2, which vanishes if and only if the curves γγγ,γγγ◦ have the

same derivative norm.

“(e)” With this we compute z12 ≡ (d0− d◦0)‖
...
γγγ‖, which vanishes if and only if d0 ≡ d◦0 . At first

glance this might confuse, as the angle between rulings and tangent are supposed to change during
arbitrary deformations. However, this indicates that a pair of coordinates (u,v) describes different
material points in reference and deformed configuration, respectively, if and only if the angles
change.

Nevertheless, there is a valid parametrisation of the reference configuration for every d◦0 that satis-
fies the edge-of-regression-condition. “⇐” If property (e) holds, we may choose d◦0 matching d0
in order to describe both configurations with the same parameter set. “⇒” Otherwise, there would
be a self-penetration of matter which cannot occur during an isometric deformation.

“(c)” We simplify z22 ≡ d2
1 +d2

2 −1 which enforces unit length of the projection of the director to
the normal plane in deformed state if and only if the coefficient vanishes.

“(b)” The preservation of the geodesic curvature of the directrix is equivalent to

y11 ≡ 2‖ ...γγγ‖
(
κ◦g − k1d1− k2d2

)
≡ 2‖ ...γγγ‖

(
κ◦g −κg

)
≡ 0.

“(a)” We end up with two remaining coefficients

x11 ≡ π(1)
G

2
+π(2)

G

2
−‖ ...γγγ‖2d2

0κg
2, y12 ≡ d1π(1)

G +d2π(2)
G −‖

...
γγγ‖d0κg.

“⇒” Assume that both x11 and y12 vanish completely (i.e. the deformation is isometric). Then we
may solve the latter for ‖ ...γγγ‖d0κ◦g and insert it in the former, which gives

x11 ≡ (1−d2
1)π

(1)
G

2
+(1−d2

2)π
(2)
G

2
−2d1d2π(1)

G π(2)
G .
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We insert (c) and eventually get

x11 ≡ d2
2π(1)

G

2
+d2

1π(2)
G

2
−2d1d2π(1)

G π(2)
G ≡

(
d1π(2)

G −d2π(1)
G

)2
≡ det[t,d,

...
d]2 ≡−κG. (8)

Hence, x11 vanishes only if the deformed configuration is developable.

“⇐” Now assume vice versa that φφφ is developable and thus

det[t,d,
...
d]≡ d1π(2)

G −d2π(1)
G ≡ 0. (9)

Since (c), for each u0 ∈ [0,L] we have d1(u0) 6= 0 or d2(u0) 6= 0 - without loss of generality let the
former be true. Then we may solve

0≡ d
du

(1)≡ d
du

(d2
1 +d2

2)≡ d1
...
d1 +d2

...
d2

for
...
d1(u0) and insert the result in (9). For clarity we omit the dependency in u0, but use = to

indicate that the following statements hold in a single point:

0 = d1π(2)
G −d2π(1)

G = d1
...
d2 +

d2
2

d1

...
d2 +d0‖

...
γγγ‖(d1k2−d2k1) .

We conclude that d1 +
d2

2
d1

= 1
d1

and solve for

...
d2 =−d1d0‖

...
γγγ‖(d1k2−d2k1) .

We plug this and the corresponding term for
...
d1 into y12 and get

y12 ≡ d1
...
d1 +d2

...
d2︸ ︷︷ ︸

≡0

+d0‖
...
γγγ‖(d1k1 +d2k2)−d0‖

...
γγγ‖κg︸ ︷︷ ︸

≡0

≡ 0,

which holds globally due to the arbitrary choice of u0. As we established y12 ≡ 0, we may use (8)
for x11 which vanishes by assumption.

For generalisation, consider the case of a non-planar but still developable reference configuration
φφφ ◦. By the definition of developability, there exists a planar state φφφ p that is an isometric deforma-
tion of φφφ ◦. The planar state is obviously developable and needs to fulfil

1≡ detA◦(·,0)≡ detAp(·,0)≡ dp
1

2
+dp

2
2
.

Hence, we may interchange the roles of φφφ ◦ and φφφ p and apply Proposition 3.1 on them and, then
again, we may employ Proposition 3.1 for the transformation between φφφ p and φφφ .

Corollary 3.2. Let φφφ ◦ be a developable surface described in the form (1), such that the director
satisfies the regularity condition (7) and the scaling condition ‖d◦− (d◦ · t◦)t◦‖ ≡ 1.

Then φφφ is an isometrically deformed state of φφφ ◦ if and only if φφφ is ruled and satisfies the following
properties:

(a) The deformed state φφφ is developable, i.e. det[t,d,
...
d]≡ 0.

(b) The geodesic curvature of the directrix is preserved, i.e. κg ≡ κ◦g .

(c) There is no change in the width of the strip, i.e. d2
1 +d2

2 ≡ 1.

(d) There is no tensile stress along γγγ , i.e. ‖ ...γγγ‖ ≡ ‖ ...γγγ◦‖.

(e) There is no penetration of matter, i.e. d0 satisfies (7).
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4 Energy Functional
As we established in the previous section, the conditions in Corollary 3.2 yield geometric con-
straints for isometric deformations of developable bands. Thus, we may compute the static equi-
librium state of a strip under these requirements and given boundary conditions by minimising the
stored energy. As we already outlined, there is no membrane deformation present such that this
energy functional only consists of the bending part.

For the sake of simplicity, we consider a rectangular strip with geodesic base line γγγ parametrised
by arc-length, and a flat reference configuration. We compute the mean curvature H of a ruled
surface (1) and simplify the resulting expression via (5). This results in

H(·,v)≡ (d1k2−d2k1)(d2
0 +1)

1+ vd′0
.

Note that the denominator of H matches exactly the transformation factor for the area element
dA = (1+ vd′0) dsdv. Hence, the bending energy of a uniformly isotropic reads

Ξ(φφφ) =
D
2

∫∫

φφφ
H2dA =

D
2

∫ L

0
(d1k2−d2k1)

2 (d2
0 +1

)2
∫ w

−w

1
1+ vd′0

dvds

= Dw
∫ L

0
(d1k2−d2k1)

2 (d2
0 +1

)2
V (wd′0) ds,

(10)

where, D = 2t3E
3(1−ν2)

denotes the flexural rigidity of the material with Young’s modulus E and
Poisson ration ν and

V (wd′0) =
1

wd′0
log
(

1+wd′0
1−wd′0

)
= 1+O((wd′0)

2)

gives the small width approximation term which may be neglected under linearisation about an
infinitely narrow band [5]. Note that non-rectangular strips yield the same energy functional (10)
with an additional additive term in the argument of V .

5 Numerical Model and Implementation
In order to compute the stable static equilibrium of a rectangular strip under specified boundary
conditions, we minimise the energy functional (10) regarding the geometric constraints 3.2(a)-(d)
and the simplified regularity condition 6. The base curve γγγ and the director field d constitute the
degrees of freedom, where latter is represented by the coefficient functions di.

Requiring 3.2(c) introduces an angle σ such that d1 ≡ −sinσ and d2 ≡ cosσ . This angle also
occurs as polar coordinate of the curvatures (k1,k2) : [0,L]→ R2 and between relatively parallel
and Frenet frame, wherever latter exists. Thereby, 3.2(c) is taken into account explicitly.

A penalty approach addresses the remaining constraints

min
γγγ,d0,σ

Ξ+ c1Ψ+ c2Θ+ c3Ω (11)

Ψ =
∫ L

0
det[γ̇γγ,d, ḋ]2du, (11a)

Θ =
∫ L

0
κ2

g du, (11b)

Ω =
∫ L

0
(‖γ̇γγ‖−1)2 du (11d)

with penalty weights ci > 0. In this formulation, c1→∞ ensures developability, c2→∞ maintains
the geodesic property of γγγ and c3→ ∞ enforces the inextensibility of the base curve.
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As this model requires at least C 2-smoothness (almost everywhere), isogeometric curves are pre-
destinated candidates for discretisation of γγγ , d0 and σ . Given a polynomial degree p and the
number of desired control points n+1, a clamped knot vector U = [u0, . . . ,un+p+1] with

0 = u0 = . . .up < up+1 ≤ ·· · ≤ un < un+1 = · · ·= un+p+1 = L

defines the family of B-Spline basis functions {Ni,p : [0,L]→ [0,1] | i = 0, . . . ,n}. These are
constructed recursively by

Ni,0(u) =
{

1 , if u ∈ [ui,ui +1]
0 , otherwise

,

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1.

A B-Spline curve βββ in q dimensions then reads

βββ : [0,L]→ Rq, u 7→
n

∑
i=0

Ni,p(u)pi,

where pi ∈ Rq are the control points, which become the degrees of freedom for our approach. For
details on the properties of B-Spline basis functions, NURBS, and related curves confer [15].

For minimisation, we utilise the interior point optimiser IPopt [9] on the functional 11, where
the boundary conditions are treated as constraints. The automatic differentiation library autodiff
[16] computes the derivatives for gradients and Hessian matrices. Theoretical background may be
looked up in [17].

6 Results and Conclusion
We choose three benchmarks to apply the model described in the previous section on. For each
case, the boundary conditions and a flat reference geometry pose the input such that length and
width of the plane strip coincide with the x- and y-axis, respectively.

For the first example, the start (u= 0) remains completely fixed, whereas the end (u= L) is dragged
towards the start and the tangent direction in the end point is flipped upwards by π

4 . Under these
boundary conditions, the problem reduces to two dimensions where the director is transported
parallelly along the plane curve. Figure 3 illustrates the equilibrium state.

The boundary conditions of the second use depicted in 4 case enforce a spatial base curve. As
before, the start is kept fixed whereas the second end is translated in both negative x- and positive
y-direction and the tangent remains fixed. Additionally, we specify a boundary condition for the
director at the second end.

The third example displayed in Figure 5 illustrates the extension to curved reference directrices.
Instead of a purely rectangular reference state, we choose a quarter of a two-dimensional torus
with radius 4. Hence, the (geodesic) curvature of the base curve is constantly κ◦g ≡ 1

4 and needs
to be preserved in the deformed state. Therefore, the penalty term Θ in (11b) is updated to yield
preservation of curvature as

∫ L
0 (κg−κ◦g )2du. We then drag the second end (u = L) both upward

and in opposite tangent direction.

Although all example benchmarks compute suiting equilibrium configurations, the computations
involve high iteration numbers with small steps that indicate susceptibility to slow convergence.
The condition numbers of the Hessian matrix within the last iteration for the three examples read
9.5 · 1017, 1.1 · 1018, 1.5 · 1017 respectively. Hence, the solution process requires numerical im-
provement in order to achieve real time applicability.

Furthermore, an ordinary differential equation related to the relatively parallel transport of normal
vectors may substitute automatic differentiation. In order to properly model FFCs, the bending
energy of section 4 requires incorporation of an anisotropic material law.
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Figure 3: Equilibrium
configuration under planar
boundary conditions.

Figure 4: Example with non-
planar base curve.

Figure 5: Example with
curved reference directrix.
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ABSTRACT

This contribution focuses on the investigation of inelastic structural effects occur-
ring during the bending deformation of cables using detailed finite element models of
helix wire strands. Due to the complex structure of cables usually consisting of con-
centric layers of intertwined wires, shields and the outer jacket, inelastic deformation
behaviour has to be expected. In this work, we model simplified cables as strands
of helix wires discretised with quadratic beam elements to investigate the influence
of geometric parameters such as the helix angle of the wires and the interactions of
the wires by means of frictionless or frictional contact models. Starting at low model
complexity, we use double wire and seven wire models to simulate pure bending of in-
tertwined strands omitting material inelasticity to avoid superposition of structural and
material effects. Different variations of contact states in the undeformed configuration
of the seven wire strand are taken into account allowing for the direct observation of
the influence of active contacts on the strand’s bending response. First steps towards
modelling the interactions between wires and objects relevant in cable bundle assem-
bly, e.g. cable ties or clips, are presented for the double wire model. The presented
models yield a valuable toolbox for the investigation of specific structural parameters
affecting the deformation behaviour of cables.

Keywords: Cable simulation, nonlinear beam, frictional wire contact, multi-wire
strand, bending experiment.

1 INTRODUCTION
In the development and manufacturing process of modern cars, cables and hoses are important
system components, see Fig. 1 left. In automotive industry, virtual assembly planning and digital
validation of system layouts require fast and physically correct simulations of the mechanical be-
haviour of cables and hoses. Section 6 of [1] and section 4 of [2] summarise application examples
from vehicle industry and [3] describes virtual product realisation processes using one-dimensional
deformable objects from the design phase to production and assembly planning.

In this work, we present a modelling approach using a detailed finite element (FE) model [4] for
composite cables which can be used to investigate the effective inelastic constitutive behavior of
abstract cables resulting from structural effects. We follow approaches for detailed wire strand
models using finite element models as described in [5, 6, 7, 8, 9, 10] for the investigation of wire
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strands under load. However, while these contributions use finite volume elements, we use finite
beam elements to model the individual wires. Following the method given in [11], we approximate
the centreline of each wire with a helix and discretise it with quadratic shape functions. This
allows for a comparatively easy implementation of the boundary and loading conditions as well as
relatively short computation times.

0 5 10 15 20 25
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0.06
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m

]
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-1]

Figure 1. Left: Overview of the system of cables and hoses in a car. Courtesy of Volvo Cars
and Fraunhofer-Chalmers Research Centre, Gothenburg. Right: Experimental result of the
pure bending of a cable specimen given as bending moment MB vs. bending curvature KB

diagram [12].

Cyclic pure bending experiments on a simple cable specimen show that the effective mechanical
response of cables is usually strongly nonlinear and inelastic [12, 13], see Fig. 1 right. Presum-
ably, material plasticity, damage and structural effects on the level of individual constituents such
as contact and friction between wires occur in such experiments due to the structural complexity
of cables. In real experiments, material and structural effects can hardly be investigated separately
with acceptable experimental effort. Previous work of the authors focused on modelling the inelas-
tic bending behaviour of a simple cable using standard constitutive laws for elasto-plasticity and
damage in the framework of geometrically exact rod models [14]. While it was possible to simulate
the bending response of the cable on the level of the sectional quantities of the geometrically exact
rod, this approach only yields an inelastic model for one class of cables and the modelling param-
eters for one specific cable type. It does not allow for the investigation of the underlying inelastic
effects which is necessary to enable a more universal estimation of the deformation behaviour of
any cable based on its structure in the future.

We therefore investigate these effects and their interplay separately with cable models using finite
elements on the level of wires in this work. A commercial FEM tool [15] is used to model the pure
bending of a cable. We model the cable as an abstract strand of intertwined wires starting at low
model complexity. In this first step, the wires are modelled as materially elastic in order to avoid a
superposition of material and structural inelasticity.

This modelling approach can furthermore be used to investigate the influence of different helix
angles of the wires on the effective behaviour of the abstract cable model. Therefore, the pure
bending simulation is performed using models with different wire helix angles as initial stress-free
configuration. The modelling approach presented in this work allows for versatile and detailed
investigations of the effective mechanical response of wire strands as abstract cable models. We
will show that it is useful for specific simulation experiments on cable-like structures to get a
better understanding of the different material and structural inelastic effects which occur in real
experiments performed on cables. While it is not simply possible to switch friction on and off in
real experiments and measure the influence of friction on the effective behaviour, we can perform
such investigations using the presented model.
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2 Cable model using finite elements
Cables undergo large spatial deformations in applications. Therefore, we discretise the wires
in our abstract cable model using finite beam elements with quadratic shape functions [4]. The
beam element is a one-dimensional line element in space and is defined by three nodes having
six degrees of freedom per node: translations in x, y and z directions and rotations about the x,
y and z axes [15]. In order to avoid superposition of structural and material inelastic effects, we
model the wires using a linear elastic material model with standard parameters for a copper alloy
(E = 1.1 ·105 MPa, ν = 0.34). We thereby deliberately omit material inelasticity which certainly
occurs during the deformation of the wires in real experiments.

2.1 Wire strand geometry

Figure 2. 3D FE model of the double
wire strand with a wire helix angle of
αc = 36◦.

Figure 3. 3D FE model of the seven
wire strand with a wire helix angle of
αc = 36◦.

The first model we investigate is a double wire strand consisting of two intertwined helices, see
Fig. 2. The second simplified cable is modelled using seven wires with one straight wire as core
and six helices in the outer layer, see Fig. 3. The intertwined wires are modelled as stress-free
helices [11], one helix resembling one metallic wire. While the definition of the geometric param-
eters of the double wire strand is straightforward, the choice of the geometric parameters of the
stress-free configuration of the seven wire strand determines the contact state in the undeformed
cross section. The necessary parameters for the double helix structure are the helix radius r and the
wire radius, where both wires have the same radius R. In the seven wire strand, the outer wires’
cross sections have an elliptic shape in the plane orthogonal to the z-axis of the structure. The
radius of the ellipse depends on the helix angle α of the wire and essentially determines if neigh-
bouring wires are in contact, see Fig. 4. Here, the core wire radius Rc and outer wire radius Rw can
differ resulting in different contact states in the undeformed cross sections. We distinguish three
cases [11, 16]. In the first case, the outer wires and the core wire have the same radius resulting in
a cross section where the outer wires are only in contact with their neighbouring wires in the outer
layer, see Fig. 5 left. The condition

R

√
1+

tan2(π
2 − π

m)

sin2 α
= r, (1)

with the number of outer wires m, has to be fulfilled. In the second case, core and outer wire radii
are different and fulfil the condition

Rw

√
1+

tan2(π
2 − π

m)

sin2 α
< Rc +Rw. (2)

This results in a cross section as shown in Fig. 5 middle, where the outer wires are only in contact
with the core wire in the undeformed configuration. In order to generate a cross section, where
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Figure 4. Definition of the parameters of a seven wire strand according to [16].

all neighbouring wires are in contact in the initial configuration, see Fig. 5 right, the radii have to
fulfil

Rw

√
1+

tan2(π
2 − π

m)

sin2 α
= Rc +Rw. (3)

To ensure comparable results and boundary conditions in the virtual experiments, we aimed at a
resulting strand radius of approximately 8 mm and a specimen length of 220 mm for all models.
For all seven wire strand models, a helix radius r = Rc + Rw = 5.33mm was used. Model variants
with different helix angles were set up for the double helix and the seven wire model to investigate
the influence of this geometric parameter. The parameters for the seven wire strand models are
summarised in table 1.

Table 1. Geometric modelling parameters for the seven wire strand models. Wire radii are
given in mm.

contact case αa = 9◦ αb = 18◦ αc = 36◦

I Rc = Rw = 2.642 Rc = Rw = 2.567 Rc = Rw = 2.257
II Rc = 3.233, Rw = 2.1
III Rc = 2.691, Rw = 2.642 Rc = 2.766, Rw = 2.567 Rc = 3.076, Rw = 2.257

Figure 5. Cross sections of seven wire strand models with different wire radii in undeformed
state. Left: Only outer wires are in contact, with Rc = Rw. Middle: Outer wires are only in
contact with core wire, Rc 6= Rw. Right: Each wire is in contact with its neighbours, Rc 6= Rw.

2.2 Contact modelling
During mechanical loading, contact between wires occurs and must be taken into account. We
use the Coulomb friction model provided in ANSYS to model contact between wires [15]. The
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pure penalty contact formulation was chosen to model wire-to-wire contact in this work. In order
to investigate the influence of friction on the effective bending response of the cable, simulations
without and with friction have been performed. A Coulomb friction model with varying isotropic
friction coefficients was used for that purpose.

The presented wire strand models were further enhanced in order to investigate the influence of
additional objects on the wire interactions, especially the friction behaviour. Those first steps
include the introduction of rings resembling objects such as cable ties, clamps or clips, see Fig 6.
We investigated double wire strand models with one central ring and two equally distanced rings
with an inner diameter of Di = 16.5 mm, outer diameter Do = 17 mm and the width w = 5 mm.
The bonded contact formulation, which connects the degrees of freedom of both contact objects in
the relevant region, was used to model the interaction between the rings and the wires in order to
emulate clamping or tight rings.

Figure 6. Double helix models with helix angle αa and additional rings modelled as rigid
bodies.

3 Virtual pure bending experiments
3.1 Boundary conditions
The boundary conditions of a planar pure bending experiment yield a deformation state where a
constant bending moment acts on the specimen. In an ideal setup, neither lateral or normal forces
nor torsional moments occur. Thus, a homogeneous specimen will reach a configuration in the
static equilibrium with a constant bending curvature along the specimen. In this work, the pure
bending boundary conditions were defined using a homogeneous beam model and later applied to
the composite structures described in the previous section. Fig. 7 shows the implementation of the
boundary conditions using a hinged support on the left, and a simple movable support on the right
end. Bending was induced by applying the bending angle θB on both ends up to a maximum of
90◦. In all virtual experiments, one full load cycle including loading and unloading to θB = 0◦

was simulated.

Figure 7. Boundary conditions for pure bending of a homogeneous beam.

The boundary conditions were applied to the composite wire strand structures using remote points
which control the degrees of freedom of the nodes in the cross sections on the strand ends. Fig. 8
shows the deformed configurations of the double and seven wire strand models at θB = 90◦ with
a constant global curvature of the structure, resulting in a semi-circular shape of the specimen.
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Figure 8. Deformed configurations of FE models of the composite structures. Left: Double
wire strand with a helix angle of αc = 36◦. Right: Seven wire strand with a helix angle of
αc = 36◦.

3.2 Analytical solution for pure bending of a wire strand
The results of the simulation experiments will be examined by analysing the bending moment MB

as a function of the bending curvature k. Costello derives in [16] an analytical expression for the
bending moment of an m wire strand consisting of one core wire and m2 outer wires with helix
angle α under bending,

MB =
πE
4

[
2m2 sinα

(2+ν cos2 α)
R4

w +R4
c

]
1
ρ
, (4)

with the wires’ Young’s modulus E, their Poisson ratio ν and the bending radius ρ of the strand,
i.e. the inverse of the bending curvature,

k =
1
ρ
. (5)

This expression has been derived neglecting friction and under the assumption that the outer wires
are only in contact with the core wire, but not their neighbouring outer wires to minimise wire
interactions. Thus, the analytical solution for m2 = 6 is comparable to our virtual simulations
using the seven wire model with contact case II given by equation (2).

3.3 Results
The following section summarises a choice of simulation results using the presented FE models to
demonstrate their capabilities.

We compare our numerical results derived with a seven wire strand model with contact case II, see
eq. (2), with the analytical solution introduced in the previous section. Fig. 9 shows the analytical
and numerical results for the three investigated helix angles α . The analytical and numerical results
show good agreement for all helix angles and thus validate our FE model. A minor deviation can
be observed for the largest helix angle αc, where the FE solution exceeds the analytical solution
at higher curvatures. Here, contact between the outer wires occurs in the FE model, which is not
considered in the analytical solution, resulting in stiffer behaviour.

Fig. 10 shows the influence of the helix angle on the effective bending behaviour for the double
(left) and seven wire strand models (right). Both figures show that the strand’s stiffness decreases
with an increasing helix angle. The analytical solution shown in Fig. 9 gives the same tendency.
This result is caused by the fact that the bending behaviour of helix wires with a smaller helix
angle tends towards the behaviour of straight wires, resulting in higher local material strain. The
behaviour of wires with a higher helix angle, however, resembles the behaviour of a spring with
smaller local strains in bending.

The presented model takes into account different contact states in the cross section, as defined in
section 2.1. Fig. 11 allows for the comparison of the bending behaviour of the different models
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Figure 9. Comparison of analytical results derived using Costello’s solution [16] with numer-
ical results for seven wire strands with contact case II and helix angles αa = 9◦, αb = 18◦

and αc = 36◦.

Figure 10. Influence of the helix angle used to model the wire strands on the effective bending
behaviour. Left: Double helix model. Right: Seven wire strand models with contact cases I
and III.

with helix angle αb = 18◦. The results show that contact cases I and III yield similar results while
contact case II shows significantly less stiff behaviour. In case II, the core wire is only in contact
with the outer wires. In case I , the outer wires are in contact with each other and in case III, the
outer wires are additionally in contact with the core wire. This means that for models with helix
angle αb = 18◦, the contacts between core and outer wires contribute less to the composite stiff-
ness than contacts between outer wires. Similar behaviour can be observed for the smaller helix
angle αa = 9◦. For models with a higher helix angle αc = 36◦, however, the model with contact
state I shows the least stiff behaviour, see Fig. 12 while contact states II and III yield bending
moments in a similar range. This implies that for this higher helix angle, the contacts between
neighbouring outer wires contribute less to the effective stiffness of the composite structure.

Figures 11 and 12 additionally show the results for each model with frictional contact. For both
helix angles, using frictional instead of frictionless contact results in hysteresis cycles. The small-
est hysteresis cycle occurs for the model with contact state II and αb and the largest for contact
state III and αc. This coincides with the number of elements in contact in the respective models,
which is lowest for contact state II and αb and highest for contact state III and αc. The result
for contact case I in Fig. 12 allows for the study of the curvature dependence of the frictional
effects. Here, the hysteresis loop only opens after a curvature of approximately 8 m−1 has been
reached. The observation of the beam elements in contact yielded that this curvature marks the
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Figure 11. Simulation results for pure bending of seven wire models with helix angle αb

and different contact states I, II and III. For each model, results of frictionless and frictional
contact are given.

Figure 12. Simulation results for pure bending of seven wire models with helix angle αc

and different contact states I, II and III. For each model, results of frictionless and frictional
contact are given.

onset of sliding between elements in contact leading to frictional behaviour. Below this curvature,
the beam elements do not slide on each other and the frictional model does not contribute to the
bending moment.

We will now take a closer look at simulation results obtained with double wire strand models.
Fig. 13 shows the pure bending results using a frictionless and frictional contact model for the
strand model with helix angle αa. It shows that the use of frictional contact has no influence on the
bending moment of the double wire strand. Closer investigations showed, that almost no sliding
between beam elements occurs in this structural model under pure bending. Consequently, the
choice of frictional contact cannot influence the response of the composite model. This is also the
case for larger helix angles.

In order to enforce sliding between the beam elements in the double wire strand, additional re-
strictions on the wire movement were introduced by adding rigid body rings with bonded contact,
as described in section 2.2. Fig. 14 shows the resulting bending moments for frictionless and fric-
tional contact for these models. One additional rigid body ring in the middle of the strand increases
the stiffness of the composite model more than two rings. Furthermore, the hysteresis opens at a
smaller bending curvature and the hysteresis cycle is bigger. This coincides with the fact that a
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Figure 13. Influence of friction on the double wire strand model with helix angle αa.

Figure 14. Influence of friction on the double wire models with helix angle αa with one
(black) or two (red) additional rigid body rings.

higher number of elements is in sliding contact during loading for the model with one ring, even
though the percentage of elements in contact is higher in the original model without any rings.

4 CONCLUSIONS
In this work, we presented an approach to model the effective mechanical response of helix wire
strands for the investigation of cable behaviour under mechanical load. A commercial finite el-
ement tool was used to generate structural models for double and seven wire strands. The wires
were modelled as stress-free helices in the straight initial configuration accounting for different
helix angles in different models. Frictionless and frictional contact models were used to investi-
gate the influence of friction on the effective behaviour of the presented composite structures. The
wires were modelled as materially linear elastic in order to avoid a superposition of material and
structural inelastic effects. The FE models of the wire strands were used for virtual pure bending
experiments.

We have shown that the presented modelling approach is useful to improve the understanding
of the influence of structural effects on the composite behaviour. The results show that structural
parameters such as the helix angle of the wires, already has an influence on the resulting behaviour,
even for frictionless contact. Furthermore, the results showed that special attention has to be paid
to correct modelling of the cross section and definition of the contacts within the cross section of
the composite structure as the number of contacts strongly affects the deformation behaviour. The
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influence of friction on the results depends on the specific structural model and can be impacted by
objects in the environment. In this work we took first steps to simulate objects relevant for cable
bundle assembly by adding rigid body rings to the double helix structure.

While this work shows the capabilities and usefulness of the FE wire strand models for the inves-
tigation of structural effects occurring under bending load, the model does not suffice to represent
the complex inelastic behaviour of a real cable as shown in Fig. 1 right. Thus, a comparison of
simulation results with experimental results is not possible, yet. In order to approach the inelastic
behaviour of a real cable specimen, the material model of the wires has to be extended to an elasto-
plastic model and the viscoplastic polymer jacket has to be added. It has been shown in previous
work [14], that the qualitatively different behaviour in the first and following cycles is a result of
initial damage during the first load cycle, e.g. detachment of the jacket from wires. Consequently,
a proper approach to model the interactions between wires and the polymer layer has to be used.
Another option is the generation of experimental data for simplified cable strands using elastic
wires to approach the wire strand models presented here.
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ABSTRACT

The present contribution aims at describing hysteresis behaviour arising from cyclic
bending experiments on cables by means of the Preisach operator. As shown in pure
bending experiments, slender structures such as electric cables behave inelastically
and open hysteresis loops arise, with noticeable difference between the first load cycle
and the following ones. The Preisach operator plays an important role in describing
the input-output relation in hysteresis behaviours and it can be expressed as a su-
perposition of relay operators. The definition of the Preisach plane occurs naturally
from the definition of Preisach operator and hysteresis loops can be computed by in-
tegrating a suitable kernel function over a domain included in the Preisach plane. A
mathematical formulation of the problem is introduced and a first attempt is made to
mathematically determine the hysteresis behaviour that describes the relation between
curvature and bending moment. Therefore, a suitable kernel function is identified in a
way that its integration over the Preisach plane results in the bending moment of the
specimen, and a comparison between different kernel functions is performed.

Keywords: Cable simulation, Cosserat rods, inelastic cable properties, data based
constitutive modelling, Preisach hysteresis operators.

1 INTRODUCTION
Electric cables, as those shown in Fig. 1(a), are complex objects due to their multi-material com-
position and their geometric properties [1, 2]. Consequently, different internal interaction effects
occur and lead to an observed effective inelastic deformation behaviour of such cables. Cyclic
bending experiments show open hysteresis loops with noticeable difference between the first load
cycle and the following ones, as shown in Fig. 1(c). In this regard, efforts have been made to
develop inelastic constitutive models in the framework of geometrically exact Cosserat rods [3].
Fig. 1(b) describes the setup of the pure bending experiment as introduced in [2], which enables
direct access to the bending moment and bending curvature. By applying only a bending moment
on the specimen, a deformation state of pure bending is achieved. The configuration of the ex-
periment ensures that no normal or shear forces act on the specimen during the experiment. The
centerline of the specimen is bent into a circular arc with constant bending curvature and conse-
quently constant bending moment along the specimen during the test.
In the framework of continuum mechanics, such deformation effects are modelled using suitable
constitutive equations for specific material behaviour [4, 5]. In the presented work, we aim at mod-
elling the observed behaviour on an abstract level using hysteresis operators. The choice of this
mathematical framework has been motivated by the ability of such operators to describe hysteresis
phenomena with enough generality and without the need of a priori assumptions on the material
behaviour.
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Figure 1. (a) Cross sections of different electric cables. (b) Pure bending test rig. (c) Bending
moment vs. bending curvature diagram measured in a pure bending experiment.

2 HYSTERESIS OPERATORS
With hysteresis, we refer to a relation between two scalar time dependent quantities that cannot be
expressed in terms of a single-valued function [6], and this relationship describes a rate indepen-
dent memory effect [7], i.e. the output is invariant with respect to changes of the time scale, and
at each time t it may depend not only on the value of the input at time t, but also on its previous
evolution. As shown in [6, 7, 8], hysteresis and hysteresis operators are a well-studied topic with
a variety of applications, mainly hysteresis effects arising from electric and magnetic phenomena.
The Preisach operator P plays a major role in modelling the input-output relation in hysteresis
behaviours and can be expressed as a superposition of relay operators R.
In this section, we will denote by v(t) any input function and by w(t) any output function, even
when talking about specific cases (e.g. bending curvature and bending moment), whereas in the
next section the notation will become more specific.

2.1 Relay operator
Given any couple (a1,a2) ∈ R2 with a1 < a2, we introduce the relay operator Ra1,a2 . For any
continuous input function v ∈ C ([0, tend ]), starting from an initial value ξ ∈ {±1}, the output

w = Ra1,a2 [v,ξ ] : [0, tend ]→ {±1} (1)

will be equal to −1 if the input function v(t) crosses the threshold value a1 from above, and will
be equal to +1 if v(t) crosses the threshold value a2 from below.
Formally, this can be expressed as

w(0) :=





−1, v(0)≤ a1

ξ , a1 < v(0)< a2

1 v(0)≥ a2

(2)
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and for any t ∈]0, tend ], setting Xt = {τ ∈]0, t] : v(τ) = a1 or v(τ) = a2},

w(t) :=





w(0), Xt = /0
−1, Xt 6= /0 and v(max(Xt)) = a1,

1 Xt 6= /0 and v(max(Xt)) = a2.

(3)

The relay operator can be interpreted as a switch operator between the values −1 and +1, with
switching interval of width a2 −a1 and centered in a2+a1

2 . A graphical representation of the relay
operator is given in Fig. 2.
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Figure 2. (a) Input function v(t) = sin(t), with t ∈ [0,10]. (b) Diagram of the relay operator
with a1 = −0.3 and a2 = 0.2. (c) Output function w(t) = Ra1,a2 [v,ξ ](t), with initial value
ξ = 1.

From the next subsection, for simplicity of notation, we will omit the initial value ξ when writing
the relay operator Ra1,a2 [v](t). This choice is justified by the fact that one could assume ξ = −1
or ξ = 1 without loss of generality.

2.2 Preisach operator
In the early 1930s, Preisach investigated whether the magnetisation in ferromagnetic materials
adjusts without inertia to the applied magnetic field. Performing switching experiments allowed
him to affirm the question, and he postulated that the magnetisation depends on the magnetic field
through a linear superposition of relay operators. Hence, the previously described relay operator
is the "building block" of the Preisach operator, which is in fact defined as a superposition of relay
operators multiplied by a suitable kernel function ω(r,s), assumed to vanish for large values of |s|
and r,

w(t) = P[v](t) =
∫ +∞

0

∫ +∞

−∞
ω(r,s)Rs−r,s+r[v](t)dsdr. (4)
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Here, v(t) and w(t) are respectively the input (Fig. 3(a)) and the output function, s and r are the
coordinates of the Preisach plane, and Rs−r,s+r[v](t) ∈ {±1} is the relay operator with switching
interval of width 2r and centered in s. Preisach provided a simple geometrical interpretation for
the operator P , which turns out to be very useful from an operative point of view. If we consider
an input function v(t), for every time t we determine the sets

A±(t) = {(r,s) ∈ R+×R : Rs−r,s+r[v](t) =±1}. (5)

The union of such sets corresponds to the so-called Preisach plane.
Let v : [0, tE ] → R be a piecewise monotone function, with monotonicity partition 0 = t0 < t1 <
· · ·< tN = tE . One can verify (see [6])that the dividing line

B(t) = ∂A+(t)∩∂A−(t), (6)

also called memory curve, at each time t is the graph of a function which can be defined recursively
by

ψ(0) = max{g−(v(0)),min{g+(v(0)),0}}
ψ(t) = max{g−(v(t)),min{g+(v(t)),ψ(ti)}} for ti < t ≤ ti+1, 0 ≤ i ≤ N −1.

(7)

Here, g−(v) denotes the straight line with slope −1 through the point (0,v) and g+(v) denotes
the straight line with slope +1 through the point (0,v). Note that B(t) carries the total memory
information present in the system at time t (see [6]).
In Fig. 3, starting from a specific input function (Fig. 3(a)) two examples of memory curves are
deduced and depicted in Fig. 3(b). Fig. 3(b) depicts also one specific choice of subset of Preisach
plane, i.e. the triangle {(r,s)|r ∈ [0,28],−28 + r ≤ s ≤ 28 − r}. If we consider the blue line
to be the memory curve B(tα) for some tα , the sets A+(tα) and A−(tα) will be the parts of the
Preisach plane respectively below and above the blue line. Analogously, assuming the red line to
be the memory curve B(tβ ) for some tβ , A+(tβ ) and A−(tβ ) are the subsets of the Preisach plane
respectively below and above the red line.
One can observe how the description of the Preisach plane depends on the specific input that is
being considered as it will be explained more rigorously in the next section. In fact, in Fig. 3(b),
the set {(r,s)|r ∈ [0,28],−28+ r ≤ s ≤ 28− r} is determined by

max
t∈[0,tend ]

v(t) = 28 and min
t∈[0,tend ]

v(t) = 0 (8)

where v : [0, tend ]→ R is the input function depicted in Fig. 3(a).
From this, one can already understand that the choice of a suitable subset of the Preisach plane
could be modified depending on the features of the input function, as well as other specifics of the
studied problem. For example, the most common choice is to work over a triangular subset of the
Preisach plane, but one could also choose a rectangular subset (see [6]).
Using Rs−r,s+r[v](t) ∈ {±1} and the definition of A±(t), (1) can be rewritten as

w(t) =
∫

A+(t)
ω(r,s)dsdr−

∫

A−(t)
ω(r,s)dsdr. (9)

It should be noted that Preisach hysteresis operators provide a model for causal response (see [7]),
such that the output value w(t) at time t depends only on inputs v(t ′) at past times t ′ ≤ t. Thus,
hysteresis loops can be computed by integrating a suitable kernel function ω(r,s) over a domain
included in the Preisach plane.
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Figure 3. (a) Input given as curvature vs. time. (b) Domain (black triangle) included in the
Preisach plane with two examples of memory curve. (c) Domain included in the Preisach
plane with an example of triangulation and a memory curve.

3 PROBLEM
As previously mentioned, we would like to describe the relation input - output (bending curva-
ture - bending moment), by means of the Preisach operator, utilising data coming from a pure
bending cyclic experiment. This translates into finding a suitable kernel function ω(r,s) such that
its integral over the Preisach plane results in a good approximation of the measured output. This
topic has been of interest in the past decades, and several approaches have been presented, such
as approximations techniques based on a finite number of optimally chosen experiments [9], ap-
proximation by means of neural networks [10, 11] and approximation by means of least square
methods [12, 13, 14]. In this work, we utilise the latter.

3.1 Problem formulation
As shown in Fig. 1(c), we deal with measurements of bending moment values with respect to
bending curvature value during 4 consecutive load cycles. The dataset that we will consider con-
sists of {ti}T

i=1, bending curvature {KBi}T
i=1 and bending moment {MBi}T

i=1. Note that the values
of time and bending curvature are prescribed by the experimental procedure, while the values of
bending moment are measured. Moreover, it is relevant to underline that here the time represents
rather an order parameter, than a time variable as it is normally considered. Since we are dealing
with a rate independent process, the time data could be rescaled and shifted, without causing any
change in our approach.
Starting from the input function, for each time step ti, we recursively define the Preisach plane, i.e.
the sets A±(ti) and the memory curve B(ti) from (7). Thus, our goal is to find ω(r,s) such that the
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following expression is minimised

1
T

T

∑
i=1

1
2

(
MBi −

∫ ∫

A+(t)
ω(r,s)dsdr+

∫ ∫

A−(t)
ω(r,s)dsdr

)2

. (10)

To this end, we will take into account only a subset of the Preisach plane, in particular a subset
of R≥0 ×R spanned by the memory curve B(t). More specifically, calling KB : [0, tend ] → R the
bending curvature function (Fig. 3(a)), setting m = max

(∣∣mint∈[0,tend ] KB(t)
∣∣ ,
∣∣maxt∈[0,tend ] KB(t)

∣∣)

we consider the triangle
{(r,s)|r ∈ [0,m] ,−m+ r ≤ s ≤ m− r} . (11)

As shown in [13, 14], we choose a tolerance d to round the input values and we divide the part of
the Preisach plane crossed by the memory curve B(t) in n elements, such that at each time step,
B(ti) lays on their edges (see Fig. 3(c)). We denote by {em}n

m=1 the elements of the triangulation,
X ⊂ N+ the set of indices given to the elements of the triangulation, and we define the following
sets:

Xi = {m ∈ X |em below the memory curve at time ti},
X\Xi = {m ∈ X |em above the memory curve at time ti}. (12)

We observe that
⋃

m∈Xi
{em} and

⋃
m∈X\Xi

{em} are the discrete corresponding sets of A+(ti) and
A−(ti) respectively.
We assume that the kernel function ω(r,s) is piecewise constant over each element of the mesh,
and we want to approximate the output as

MBi ≈ ∑
m∈Xi

∫ ∫

em
ω(r,s)dsdr− ∑

m∈X\Xi

∫ ∫

em
ω(r,s)dsdr i = 1, ...,T. (13)

Now, for each time step, we define the row vector ∆∆∆i = [δ 1
i , ...,δ n

i ], where

δ m
i =

{
1 if m ∈ Xi

−1 if m ∈ X\Xi
. (14)

Calling xm =
∫ ∫

em ω(r,s)dsdr, we have

∆ =




∆∆∆1
...

∆∆∆T


 ∈ RT×n, XXX =




x1

...
xn


 ∈Rn, YYY ∈




MB1
...

MBT


 ∈ RT . (15)

Hence, the function to be minimised is f (XXX) = 1
2‖∆ ·XXX −YYY‖2.

In our case, we deal with insufficient experimental data (more unknowns than observations), hence
the rank of the matrix ∆ is rank(∆) = q < min{T,n}. We then need to perform a singular value
decomposition of the matrix ∆T ∆ =USV T , where S is a diagonal matrix, with rank(S) = q.
We extract Ŝ, Û , V̂ from S, U , V , respectively, by eliminating the rows and the columns of S that are
zero, and the corresponding columns of U and V . Setting XXX = V̂ ZZZ, the expression to be minimised
becomes

g(ZZZ) = ZZZT ŜZZZ−YYY T ∆ ·V̂YYY . (16)

It is easily verified, that once a minimiser ZZZ∗ of g is found, then XXX∗ = V̂ ZZZ∗ minimises f .

3.2 Kernel function and approximated data
A minimiser ZZZ∗ of g can be found using the Matlab function quadprog. In Fig. 4(a), an approx-
imation of the kernel function ω(r,s) is shown, and the integral of such kernel function over the
domain included in the Preisach plane results in the diagram shown in Fig. 4(c). Comparing the
experimental data in Fig. 1(c) with the diagram in Fig. 4(c), one can see that this approach de-
scribes the relation input - output (i.e. bending curvature - bending moment) observed during the
experiments quite well. One should note that the step-like behaviour of the diagram in Fig. 4(c) is
due to the tolerance value d. However, the approximated kernel function shows a highly nonlinear
behaviour.
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Figure 4. (a,b) Kernel function obtained by minimising 16, observed by different angles. (c)
Estimated plot of bending moment vs. curvature obtained by means of the hysteresis operator.

4 COMPARISON OF DIFFERENT KERNEL FUNCTIONS
In this section we apply the described procedure to pure bending data coming from a similar yet
different pure bending experiment, using the same cable type as in Fig. 1(c). As shown in Fig. 5,
the experiment consists of a higher number of load cycles with increasing maximum bending cur-
vature. For each maximum bending curvature

{
Kk

B
}9

k=1, three cycles are performed. Afterwards,
the curvature is increased until the next maximum bending curvature and three cycles are exe-
cuted on this level. This procedure is continued until a maximum bending curvature of 31.4m−1

is reached. This yields a total of 27 load cycles.
From these data, we extract those concerning loading cycles 10−12 (purple) with maximal bend-
ing curvature K4

B = 6.9m−1, cycles 16−18 (yellow) with K6
B = 10.4m−1, cycles 19−21 (orange)

K7
B = 17.45m−1 and cycles 25−27 (blue) with K9

B = 31.4m−1. We treat these data as separate data
sets and approximate separate kernel functions for each data set.
In Figs. 6, 7, 8, 9, we show on top the estimated kernel function seen from two different angles,
on bottom left the measured values of the bending moment w.r.t bending curvature and on bottom
right the estimated hysteresis diagram evaluated by means of the kernel function integrated over
the suitable subset of the Preisach plane. One can notice that with this experiment, the difference
in the hysteresis diagrams between the first cycle and the following ones is less visible, probably
due to the fact that the cable is bent many times on one bending curvature, adding damage incre-
mentally from one curvature level to the next. In the experiment shown in Fig. 1(c), the whole
damage accumulation occurs during the first load cycle.
At first, one can notice how the Preisach operator is able to reproduce very different hysteresis be-
haviours, either with noticeable difference between first and following loading cycles (Fig. 4, 6, 7, 8)
and with static hysteresis (Fig. 9). Observations can be made by comparing Fig. 4 and 9. Both
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cases deal with similar maximal values of bending curvature as input. In Fig. 4, the bending
moment in the first cycle differs from the following ones and the identified kernel function is non-
smooth. In Fig. 9, however, the bending moment shows a static hysteresis as there is no difference
between the cycles and the kernel function appears smoother.
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Figure 5. Input given as bending curvature vs. time. The purple, yellow, orange and blue
parts are the input of Figs. 6, 7, 8, 9 respectively.
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Figure 6. Results for cycles 10 - 12. (a), (b) Estimated kernel function seen from two different
angles. (c) Measured bending moment vs. bending curvature, starting from a piecewise linear
input (bending curvature). (d) Estimated plot of bending moment vs. curvature.
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Figure 7. Results for cycles 16 - 18. (a), (b) Estimated kernel function seen from two different
angles. (c) Measured bending moment vs. bending curvature, starting from a piecewise linear
input (bending curvature). (d) Estimated plot of bending moment vs. curvature.
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Figure 8. Results for cycles 19 - 21. (a), (b) Estimated kernel function seen from two different
angles. (c) Measured bending moment vs. bending curvature, starting from a piecewise linear
input (bending curvature). (d) Estimated plot of bending moment vs. curvature.
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Figure 9. Results for cycles 25 - 27. (a), (b) Estimated kernel function seen from two different
angles. (a) Measured bending moment vs. bending curvature, starting from a piecewise linear
input (bending curvature). (d) Estimated plot of bending moment vs. curvature.

5 CONCLUSION
The Preisach operator seems to be a very powerful and versatile tool to describe inelastic deforma-
tion behaviours of electric cables and the consequent open hysteresis loops arising from bending
experiments. Moreover, such mathematical tool captures the different hysteresis cycles very well
and is relatively easy to implement. However, the interpretation and the comparison of kernel func-
tions in different cases appear non-trivial, even when observing similar phenomena. The possible
correlation between the properties of the kernel function and the physical phenomenon should be
topic of further investigation.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 860124.

REFERENCES
[1] Dörlich, V., Linn, J., Diebels, S.: Flexible beam-like structures - experimental investigation

and modeling of cables. In: Advances in Mechanics of Materials and Structural Analysis.
Advanced Structured Materials 80. (2018) 27 – 46 Springer International Publishing.

[2] Dörlich, V., Linn, J., Diebels, S.: Bending of viscoplastic cables. In: PAMM. Proceedings in
Applied Mathematics and Mechanics 17. (2017) 293 – 294
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ABSTRACT

Digital prototyping presents one of today’s biggest chances in boosting efficiency of
product development in automotive industry. Handling flexible parts, such as cables
and hoses, is a big challenge in this context. The software IPS Cable Simulation ad-
dresses this topic and solves the problem for a wide field of applications. To obtain
reliable simulation results, a basic set of parameters describing the effective mechan-
ical properties of the flexible parts is an essential part of the model. The development
of the MeSOMICS measurement machine represents a practical solution to this need
for experimental data. Additional challenges are related to dynamic simulations of
vehicles in operation mode. To solve these, we introduced the durability and dynam-
ics module as an extension to the established software. This leads to an extended set
of required parameters. In order to obtain these dynamic parameters, two different ex-
perimental setups have been realized. The experiments investigate damped torsional
and bending oscillations, and yield parameters that can conveniently be treated as
effective viscous properties within the framework of our software.

Keywords: cable simulation, dynamics, Cosserat rods, damping parameters, mea-
surements.

1 MOTIVATION AND STATE OF THE ART
In today’s automotive industry, digital validation at an early stage has become a standard procedure
in product development. This includes the validation of flexible parts such as cables and hoses.
The variety of electronics used in modern vehicles has made the cable system one of the central
parts when it comes to safety and function of the product. So far the simulation based validation
of cables and hoses using the IPS software family has focused on the basic functionality of the
vehicles, namely the proper design of moving parts (such as doors, lids or the suspension linkage
and steering) as well as the validation of production processes (assembly and disassembly by
human workers as well as robotic applications). We aim to extend the field of application for
our software by simulations of products in more dynamical operation, where inertial and damping
effects need to be considered, and generalize our models and simulation methods correspondingly.

1.1 Classical linear viscoelasticity
Extending the range of applications from static or sequentially performed quasistatic equilibrium
computations to fully dynamic simulations driven by transient structural excitations, we need to
include viscoelastic constitutive properties in our structural model to account for internal damping
effects, besides elastic structural response and inertia. Very common are one-dimensional rheo-
logical models for this purpose, as have been described e.g. in [1], and more recently by [2] with
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Figure 1: Schematic visualisation of a Kelvin-Voigt damping model

a focus on flexible multibody systems. These models usually consist of serial or parallel combi-
nations of linear or nonlinear springs and dashpots, forming models of varying complexity. The
Kelvin-Voigt (KV) type damping model, which we introduced in our previous work [3], is on the
more simple part of the scale. It consists of an elastic spring-type and a viscous damper-type ele-
ment connected in parallel (see Fig. 1). We refer to the conference paper [4] for basic numerical
experiments exploring Cosserat rod dynamics with Kelvin-Voigt type viscous damping.

In the one dimensional case, the stress strain relation of the Kelvin-Voigt model reads:

σ = Eε +ηε̇ (1)

Eqn. (1) with elastic modulus E and viscous damping η results as an approximation of a more
general rheological model of Generalized Maxwell (GM) type in the low frequency range, as
briefly discussed in section 4.4 of [5]. In 3D solid mechanics, a similar constitutive model can be
stated in tensorial form [6] following [7], as has been shown in [5] and more recently discussed by
Bauchau and Nemani [2]. The latter paper focuses on Maxwell-type damping behavior of beams
with rectangular cross-sections and non-negligible cross-sectional warping and is the most recent
publication related to our research. The presented numerical experiments conclude in a general
dissuasion against Kelvin-Voigt type modeling of viscoelastic beams. However, the use-cases
presented by Bauchau and Nemani differ to a large extent from our field of application.

It turns out that in our application case the benefits of this simpler model outweigh the potential
drawbacks of the model. In the so called Standard Linear Solid (SLS) model — this is defined
[1] as a GM model with only one viscous Maxwell element, consisting of an elastic spring and
a viscous damper in row, parallel to the elastic spring, equivalent to a one term Prony series —
as well as in GM models of more complex type, stiffness and damping parameters are inevitably
coupled as real and imaginary parts of a complex response function (see [14] Ch. XII §123). While
this reflects the built-in causality of the material response, which is certainly a not only desired, but
mandatory property for a proper material model, the hard wired coupling of elastic stiffness and
viscous damping makes parameter identification for GM models a tedious task. Differently, the
two parameters of the KV model can be adjusted independently, which turns out to be a favourable
feature if one tries to match the effective, cross sectional response of a complicated composite
structure as a cable (see Fig. 2). Trying to achieve the same with the 3 parameters of SLS model,

Figure 2: A collection of composite cables with complex cross sectional structure

our experience shows that one encounters substantial difficulties.

Therefore we still regard the KV approach to low frequency viscoelastic response of composite
cable structures as the prefered choice. This paper aims to further substantiate that claim by
applying physical experiments.
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1.2 Viscoelastic rods
Most works on rods with viscoelastic properties deal with linear Euler–Bernoulli or Timoshenko
beam models. In contrast, viscous damping models for geometrically nonlinear beams or rods are
rarely found in literature. Notably, Antman [8] introduced a damping model of the form

FFF = ĈF · (ΓΓΓ−ΓΓΓ0)+ V̂F · Γ̇ΓΓ, MMM = ĈM · (KKK−KKK0)+ V̂M · K̇KK (2)

with the cross section integrated viscous response given in the effective constitutive equations (2)
for the material sectional forces and moments characterized by the diagonal matrices

V̂F = diag(γS1,γS2,γE), V̂M = diag(γB1,γB2,γT ) , (3)

with positive, but otherwise undetermined parameters. Antman’s approach was primarily moti-
vated as an artificial, regularizing viscous modeling element introduced to suppress the formation
of shock waves in the hyperbolic dynamics of elastic Cosserat rods. For a brief review of other
related work, we refer to [5], as well as to the more recent work of Bauchau et al. [2].

2 SHORT OVERVIEW OF THE VISCOELASTIC COSSERAT ROD MODEL

Figure 3: Schematic sketch of the centerline
curve and moving frame defining a Cosserat rod.

The geometrically exact theory of Cosserat
rods has been introduced by [9] and [10]. Fol-
lowing their work, our Cosserat rod is defined
by its centerline curve rrr(s, t) = rk(s, t)eeek, with
cartesian component functions rk(s, t) w.r.t. the
fixed global orthonormal frame {eee1,eee2,eee3}
of Euclidian space, and the "moving frame"
R̂RR(s, t) = aaa(k)(s, t)⊗eeek ∈ SO(3) of orthonormal
directors, booth smooth functions of the curve
parameter s and the time t. The local cross
sections with normals aaa(3) along the rod are
spanned by the pair of directors {aaa(1),aaa(2)}, as
sketched in Fig. 3.

2.1 Material strain measures
The material strain measures associated to the configuration variables are given by the components
Γk = aaa(k) · ∂srrr of the tangent vector in the local frame (i.e.: ΓΓΓ = R̂RR

T · ∂srrr = Γkeeek), with Γ1, Γ2
measuring transverse shear deformation and Γ3 measuring extensional dilatation, and the material
Darboux vector KKK = R̂RR

T · κκκ = Kkeeek, obtained from its spatial counterpart κκκ = Kkaaa(k) governing
the Frénet equations ∂saaa(k) = κκκ × aaa(k) of the frame directors, with K1, K2 measuring bending
curvature w.r.t. the director axes {aaa(1),aaa(2)}, and K3 measuring torsional twist around the cross
section normal. In general, the reference configuration of the rod, given by its centerline rrr0(s) and
frame R̂RR0(s) = aaa(k)0 (s)⊗eeek, may have non-zero curvature and twist (i.e.: KKK0 6= 0). However we may
assume zero initial shear (Γ01 = Γ02 = 0), such that all cross sections of the reference configuration
are orthogonal to the centerline tangent vector, which coincides with the cross section normal (i.e.:
∂srrr0 = aaa(3)0 ⇒Γ03 = 1) if we choose the arc–length s of the reference centerline as curve parameter.
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2.2 Dynamic equilibrium equations
The constitutive equations (2) – or more general ones of viscoelastic type (see Ch. 8.2 in [11]) –
are required to close the system of dynamic equilibrium equations

∂s fff + fff ext = (ρ0A)∂ 2
t rrr (4)

∂smmm+∂srrr× fff +mmmext = ∂t(ρ0ĴJJ ·ωωω) (5)

which has to be satisfied by the spatial stress resultants fff = R̂RR ·FFF and stress couples mmm = R̂RR ·MMM
with appropriate boundary conditions (see [10]). The inertial terms appearing on the r.h.s. of
the equations of the balance of forces (linear momentum) Eqn. (4) and the balance of moments
(angular momentum) Eqn. (5) depend parametrically on the local mass density ρ0(s) along the rod
as well as on geometrical parameters of the local cross section (i.e.: area A(s) and area moment
tensor ĴJJ(s, t) = R̂RR · ĴJJ0(s) · R̂RRT

) and contain the accelerations of the centerline positions ∂ 2
t rrr(s, t)

as well as the angular velocity vector ωωω(s, t), which is implicitely defined by the the temporal
evolution equations ∂taaa(k) = ωωω×aaa(k) of the frame in close analogy to the Darboux vector, and its
time derivative ∂tωωω(s, t) as dynamical variables (see [10], [11] and [3] for details).

2.3 Identification of minimal set of parameters for experimental work
For slow motions like opening or closing doors and lids a quasistatic approach yields the best trade-
of between accuracy and speed. In this approach we utilize a geometrically non-linear Cosserat
rod model and combine it with a linear constitutive model [12] and [5]. When searching for a
solution of the non-linear balance equations, we use the minimization of potential energy, which
(besides gravity and frictionless contact interaction) is determined by the elastic potential energy

V =
1
2

∫ L

0
ΓΓΓT ĈΓΓΓΓ+KKKT ĈKKKKds (6)

with ĈΓ = diag(GA1,GA2,EA) and ĈK = diag(EI1,EI2,GJT ). Here, the material strain and cur-
vature measures are denoted as ΓΓΓ and KKK, respectively and the effective stiffness parameters of the
cables

[GA1], [GA2], [EA], [EI1], [EI2] and [GJT ] (7)

need to be determined for practical applications in cable simulation. For cables and hoses, we
determine these parameters using the MeSOMICS test rig, a highly automated measurement setup
that has been developed at ITWM [13] specially for cable simulation applications.

The kinematics of suspension linkage will, for instance, undergo substantially faster motions in
dynamic operation scenarios in the frequency range up to 50 Hz. As a consequence, inertial and
damping effects play a considerable role in the motion of cables and hoses that are attached to
these parts of the vehicle. In order to simulate these kinds of scenarios, we have to move from
the quasistatic to a transient simulation approach. Here we assume a Kelvin-Voigt-type material
to take damping effects into account [3], as the considered frequency range is still on the slow
side, compared to much faster internal relaxation effects of the involved materials. Therefore, we
additionally consider dissipative effects modeled by the so called dissipation function [14]1

D =
∫ L

0
Γ̇ΓΓT V̂ΓΓ̇ΓΓ+ K̇KKT V̂KK̇KKds , (8)

with V̂Γ = diag(ηGA1,ηGA2,ηEA) and V̂K = diag(ηEI1,ηEI1,ηGJT ), and driven by the strain and
curvature rates Γ̇ΓΓ and K̇KK. In addition to the above mentioned effective stiffness parameters we need
to obtain the effective viscous parameters:

[ηGA1], [ηGA2], [ηEA], [ηEI1], [ηEI2] and [ηGJT ] . (9)

1Eqn. (8) is deduced from the volumetric continuum version of the dissipation function of a Kelvin-Voigt solid, as
discussed in [6] Ch. V §34 and [7], adapted to our Cosserat rod in [3]. For details, see also [5].
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The number of parameters that need to be determined experimentally can be further reduced by
utilizing theoretically deduced critical damping values for tensile, torsional and transverse shear
vibrations [4]. In particular for tensile and shearing excitations, this is a reasonable simplification,
since these have been shown to have negligible effects on the overall deformation behavior of the
rod due to their high frequency and low amplitude characteristic.

According to the results of a linearized structural vibration analysis [4], effective critical damping
values for extensional, torsional and transverse shear vibration modes are given by

[ηEA]cr =
4L
π
√

ρL [EA] , [ηGJT ]cr =
4L
π
√
[ρ0JT ][GJT ] , [ηGA]cr = 2

√
[ρ0I][GA] , (10)

where ρL = ρ0A is mass per length, and [ρ0I] = ρL(I/A) and [ρ0JT ] = 2[ρ0I] denote the rotational
inertia parameters of the circular cross section, with I1,2 ≡ I and JT = 2I. While [ηEA]cr and
[ηGJT ]cr scale proportional to the rod length L, [ηGA]cr scales proportional to the radius of gyration√

I/A of the cross section, independent of L.

For composite cables, neither [GA] nor [ηGA] are practically measurable quantities. Similarily,
quasistatic and dynamic uniaxial tension experiments to determine [EA] and [ηEA] are plagued by
systematic problems induced by often not well defined clamping of the cables at the boundaries.
Although the approximation [EA]≈ (A/I)[EI] typically underestimates tensional stiffness, it yields
reasonable values for practical applications, as [GA] ≈ [EA]/3 does. Eqn. (10) may then be used
to calibrate effective damping parameters [ηEA] and [ηGA] w.r.t. their critical values.

Differently, effective torsional damping is directly accessible via a simple experimental setup.
Also bending oscillations of cables can be investigated experimentally, as demonstrated in [15].

3 EXPERIMENT
Two experimental prototypes (similar to the stiffness measurements) have been set up and are
being tested at ITWM. One is a dynamic bending test (see Figs. 4 and 5), the other setup is a
dynamic torsion test, following the standard torsional pendulum test for measuring the torsional
stiffness of plastics [16] (see Fig. 6, 7 and 8). In both tests the specimens are fixed on one end.
The free end is deflected mechanically. After releasing, the decaying free oscillation is recorded
using a high speed camera.

Figure 4: Schematic sketch of
the experimental setup for bend-
ing oscillation measurements. Figure 5: Data from an example measurement.

3.1 Dynamic bending test
The evaluation of the recorded data uses the lsqnonlin-function built-in in MATLAB to estimate
the damped Eigenfrequency Ω and decay constant δ from the recorded data. Related dynamic
bending stiffness and effective damping constant are computed based on Euler-Bernoulli beam
theory

[EI]dyn = ω2Cbc , [ηEI] = 2δCbc , (11)

with ω =
√

Ω2 +δ 2 and constant Cbc = ρA
(

L
µ0

)4
determined by boundary conditions.
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3.2 Dynamic torsion test

Figure 6: Measure-
ment scheme for
torsional oscilla-
tions.

Figure 7: Exper-
imental setup for
torsion oscillations.

Figure 8: Extracted data from an example measure-
ment.

The setup for measuring torsional oscillations (see Figs. 6, 7) resembles the well-known torsional
pendulum, where the sample is fixed on one end, while the other end is attached to a heavy disc.
After a manually induced initial torsional deflection, the experimental data displayed in Fig. 8
show that the disc rotates in a damped harmonic rotational oscillation.

Figure 9: Torsional damping behavior for different specimen lengths. Left graph shows the 95%
confidence interval for the fitting parameter related to DE , depicted in six steps. Right graph shows
the resulting uncertainty in δ for fixed values of DE , based on the 95% confidence intervals of each
individual fit with fixed values for DE .

The recorded trajectories are fitted with a circular function to obtain the torsion angle ϕ over time.
The extracted data is then fitted analogous to the bending damping evaluation. With JDisc the
inertial moment of the disc on the torsional pendulum and the cable mass neglected it holds

[GJ]dyn = ω2LJDisc , [ηGJ]≈ 2δLJDisc−LDE , (12)

with ω =
√

Ω2 +δ 2 and DE summarizing damping effects occurring at the fixation of the speci-
men. In order to determine DE we need to increase sample length as much as possible, since the
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term for the effective damping constant in (12) translates to

δ ≈
[ηGJ]

L +DE

2JDisc
⇒ δ L→∞−→ DE

2JDisc
. (13)

However, since space in our setup is limited and recorded data shows significant variance (see
Fig. 9), the estimation of DE is still under investigation. Upon variation of the specimen length we
expect a behavior of δ that follows a 1

L -trajectory, see Eqn. (13). At the moment, the uncertainty of
DE based on the 95 % confidence interval in the fit considering [ηGJ] and DE as a parameter leads
to a combined uncertainty range of about 184 % for [ηGJ], spanning from 0.635×10−4s−1 (lowest
point of the lower red dashed line depicted in the right graph of Fig. 9) to 3.908×10−4s−1(highest
point of the upper red dashed line depicted in the right graph of Fig. 9). This leads to a tem-
porary loss of reliability for the results for [ηGJ]. For further reading on the torsional damping
measurement setup, see [17].

4 APPLICATION IN SIMULATION
We performed simulations of a cable of fixed length (200 mm) clamped to a rigid body that under-
goes a sweep motion excitation (See Fig. 10).

Figure 10: Setup of the virtual experiment (left) and applied sweep motion from 10 Hz to 38 Hz
(right).

The resulting movement of the simulated cable is read out at the apex of the arch. In order to get
a grasp of the sensitivity of a realistic use case against deviations in the measured damping value,
we performed the simulation with varying values for [ηEI]. Reasonable boundaries for measured
parameters are±50% of the measured value as an already conservative estimation. The results for
this interval is shown in Fig. 11. It appears, that with decreasing damping, the size of the amplitude
envelope increases as expected (from left to right in the graphics row).

Figure 11: Resulting cable motion with values of 1.5 times the measured value, measured value
and 0.5 times the measured value applied.

However, the changes in resulting motion are relatively small compared to the change in damping
value. As a reference we compare the amplitudes at 3 s and 6 s of the sweep motion excitation,
which refers to excitation frequencies of 22 Hz and 34 Hz, respectively (see red lines in Fig. 11).
The amplitudes at these points differ only within ±1 mm from each other. In our field of applica-
tion this represents a satisfying precision.
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However, since the behavior does not change its characteristic within these boundaries, we de-
creased the applied damping value further to 1/5th and 1/10th of the measured value respectively.
The results are shown in Fig. 12, which starts with the measured value applied and shows the ef-
fect of decreasing damping value from left to right. This simulation shows a clear appearance of a
resonance at 5.5 s, which translates to 32 Hz in the sweep motion.

Figure 12: Resulting cable motion with values of measured value, 1/5th of the measured value and
1/10th of the measured value applied.

5 CONCLUSION
Our preliminary results are promising and indicate that the Kelvin-Voigt-type material model is
suited to simulate dynamic behavior of cables and hoses within the considered time scale of low
oscillation frequencies. Fitting the extracted motion data yields a damping value [ηEI] (or [ηGJ])
as well as a dynamic stiffness parameter [EI]dyn (or [GJ]dyn). The obtained parameters can be used
as effective mechanical properties within the framework of our simulation software.
While the results for bending oscillations have shown to be sufficiently robust, the interpretation
of torsional oscillations is subject of ongoing research.

6 OUTLOOK
The simulation study shown in section 4 provides a lot of insight to the realistic use-case behavior.
However, an additional validation experiment is subject of ongoing research in our department
(see Fig. 13). This will yield further insight in terms of parametrization and applicability of the
Kelvin-Voigt damping behavior.

Figure 13: Experimental setup for validation of simulation results.

https://doi.org/10.3311/ECCOMASMBD2021-207

398



REFERENCES
[1] R.M. Christensen, Theory of Viscoelasticity, p. 1–34, 1982.

[2] Olivier A. Bauchau and Nishant Nemani, Modeling viscoelastic behavior in flexible multi-
body systems, Multibody System Dynamics, 51(2), p. 159–194, 2020.

[3] H. Lang, J. Linn and M. Arnold, Multibody dynamics simulation of geometrically exact
Cosserat rods, Multibody System Dynamics, 25(3), p. 285–312, 2011.

[4] H. Lang, S. Leyendecker and J. Linn, Numerical experiments for viscoelastic Cosserat rods
with Kelvin-Voigt damping, Proceedings of ECCOMAS Thematic Conference on Multibody
Dynamics, p. 453–462, Zagreb, Croatia, 2013.

[5] Linn, J. and Lang, H. and Tuganov, A., Geometrically exact Cosserat rods with Kelvin–Voigt
type viscous damping, Mechanical Sciences, 4(1), p. 79–96, 2013.

[6] L. D. Landau and J. M. Lifshitz , Theory of Elasticity, 1986.

[7] Jean Lemaitre and Jean-Louis Chaboche, Mechanics of Solid Materials, 1990.

[8] Stuart S. Antman, Invariant Dissipative Mechanisms for the Spatial Motion of Rods Sug-
gested by Artificial Viscosity, Journal of Elasticity, 70(1-3), p. 55–64, 2003.

[9] E. Reissner, On One-Dimensional Large-Displacement Finite-Strain Beam Theory, Studies
in Applied Mathematics, 52(2), p. 87–95, 1973.

[10] J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part
I, Computer Methods in Applied Mechanics and Engineering, 49(1), p. 55–70, 1985.

[11] Stuart S. Antman, Elasticity, Nonlinear Problems of Elasticity, p. 457–530, 1995.

[12] J. Linn, T. Hermannsson, F. Andersson and F. Schneider, Kinetic aspects of discrete Cosserat
rods based on the difference geometry of framed curves, Proceedings of ECCOMAS The-
matic Conference on Multibody Dynamics, p. 163–176, Prague, Czech Republic, 2017.

[13] MeSOMICS Homepage: www.mesomics.eu.

[14] L. D. Landau and J. M. Lifshitz, Statistical Physics - Part I, 1980.

[15] F. Schneider, Y. Kunz, J. Linn, V. Dörlich and F. Andersson, Kelvin-Voigt Damping Param-
eters for cosserat rod dynamics, ECCOMAS Multibody Dynamics Conference, Duisburg,
Germany, 2019.

[16] Kunststoffe - Bestimmung dynamisch-mechanischer Eigenschaften - Teil 2: Torsionspendel-
Verfahren, DIN EN ISO 6721-2:2019-09.

[17] Philipp Knaus, Bestimmung der Torsionsdämpfung von Stäben und Kabeln, Bachelor’s the-
sis, 2021, Technical University Kaiserslautern.

https://doi.org/10.3311/ECCOMASMBD2021-207

399



10th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS

Section
VEHICLE DYNAMICS AND AEROSPACE APPLICATIONS

400



ECCOMAS Thematic Conference on Multibody Dynamics 

December 12- 15, 2021, Budapest, Hungary 

Handling Evaluation of Tractor-semitrailer with Split Fifth Wheel 

Coupling Undergoing an ISO Double Lane Change Manoeuvre  

A. Jogi
1
, S. Chandramohan

1
, S. Dash

2 

 

1
 Department of Mechanical Engineering 

Indian Institute of Technology Madras 

Chennai, India -600036 

ajithjogi@gmail.com, sujatha@iitm.ac.in 

2
 Department of Mechanical Engineering 

National Institute of Technology Tiruchirappalli 

Trichy, India -620015 

sabyadash21@gmail.com 
 

ABSTRACT 

Tractor-semitrailers face the issue of off-tracking which restricts their movement 

through congested areas. One of the innovative and passive methods to reduce off-

tracking in tractor-semitrailers is to implement a Split fifth wheel coupling (SFWC). 

Studies show that off-tracking is reduced by up to 21% for a circular turning 

manoeuvre. The handling performance of the tractor-semitrailer with SFWC is not 

evaluated yet and hence needs to be ad-dressed. In the present work, in order to 

assess the handling performance of the vehicle with SFWC, simulations are carried 

out for ISO double lane change manoeuvre at various speeds. The results are 

compared with those of the Conventional fifth wheel coupling (CFWC) model to 

understand the relative performance of the tractor-semitrailer with SFWC. The 

results show that the performance of tractor-semitrailers with SFWC is on par with 

that of vehicles with CFWC at lower speeds; in fact, for speeds below 40 kmph, the 

lateral acceleration experienced by the semitrailer of SFWC vehicle is less 

compared to that of CFWC vehicle. However, it becomes a little unstable at higher 

speeds. With the development of stability control systems like Electronic stability 

control (ESC), optimized for tractor-semitrailers with SFWC, their performance 

would improve. 

Keywords: Split fifth wheel coupling, Off-tracking, Hitch, Tractor-Semitrailer, 

DLC, Handling 

1. INTRODUCTION 

Tractor-semitrailers are articulated freight carrying vehicles, where a portion of the trailer’s load 

is supported by the tractor. Usually, these are lengthy vehicles making them difficult to 

manoeuvre in congested roads, since the space required to take the turn increases with 

wheelbase. Off-tracking is a metric to measure this turning space, which is defined as the radial 

distance between the trajectory of the front and rearmost axles of a vehicle during the turning 

manoeuvre. Many researchers, including Jindra [1], Pretty [2] and Choi et al. [3] have worked 

on the modelling of off-tracking. Steering the semitrailer axle is one of the effective methods for 

reduction of off-tracking; however, it includes a complex system to control the steering, which 

makes it expensive. Jogi and Chandramohan [4] have developed a new hitch mechanism, 

termed Split fifth wheel coupling (SFWC) which reduces the maximum off-tracking by a 

significant margin. SFWC is a passive mechanism without the inclusion of complex systems. 

It is necessary to evaluate the handling performance of the tractor-semitrailer with SFWC to 

ensure its safe operation. Double lane change (DLC) manoeuvre is one of the handling evalua-

tion methods, wherein the vehicle swiftly changes its lane and comes back to its original lane to 

avoid an obstacle. There are various kinds of DLC specifications which have been compared 

with each other by Peng and Yang [5]. ISO DLC is one of the standards for such tests. ADAMS 

/Car tool is capable of performing the simulations of closed-loop ISO DLC test and provides 

good results [6]. 
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1.1. SFWC 

The Conventional fifth wheel coupling (CFWC) consists of a turntable fixed to the chassis of 

the tractor. It receives the kingpin of the semitrailer, forming a joint which serves not only as an 

articulation point, but also as the point of vertical load transfer from the semitrailer to the trac-

tor. Figure 1 (a) shows the conceptual model of the tractor-semitrailer with CFWC. On the other 

hand, SFWC being a novel off-racking reduction mechanism, the articulation point and the 

point of vertical load transfer have been separated by a certain distance. It consists of two sub-

units: cylindrical joint and roller mechanism, as shown in Figure 1 (b). The former takes care of 

articulation, whereas the latter allows the vertical load transfer from the semitrailer to the tractor 

even when the vehicle is articulating. Studies have shown that the SFWC, when equipped on the 

conventional tractor-semitrailer, reduces maximum off-racking by up to 21% for a circular ma-

noeuvre [4]. When analysed for 90º and 180º turning manoeuvre, it was found to reduce the 

maximum off-racking by up to 13.9% and 14.7% respectively [7]. 

 

 

 

 

 

 
                                    CFWC 

 

 
                                  (a) 

 
 
                                  (b) 

 

Figure 1. Conceptual model of the tractor-semitrailer with (a) CFWC (b) SFWC 

(Courtesy: Jogi and Chandramohan [7]). 

2. METHODOLOGY 

In the present work, a multi-body virtual prototype is built using the ADAMS Car tool. Initially, 

the CFWC model is built as per the specifications of AASHTO Standard Design Interstate Trac-

tor-Trailer WB-62, specifications of which are mentioned in Appendix 1. Using the template 

builder option, CFWC model is modified into SFWC, by adding a roller mechanism and curved 

track. The kingpin offset chosen for the SFWC model is 812.8 mm. To evaluate the handling 

performance of the vehicle with SFWC, it is simulated for closed-loop ISO double lane change 

(DLC) manoeuvre, the specifications of which are mentioned in Figure 2. Five speeds are cho-

sen for the study: 20 kmph to 60 kmph with an interval of 10 kmph.  

 

Figure 2. Specifications of ISO DLC course for heavy vehicles (Courtesy: MSC 

Software Corporation [8]) 

Cylindrical joint 
Roller mechanism 

https://doi.org/10.3311/ECCOMASMBD2021-251

402



As shown in Figure 2, the actual length of the ISO DLC course is 170 m; however, to study the 

behaviour of the vehicle after finishing the course, the vehicle is run for an additional distance 

of about 130 m. The turn direction is chosen to be right for all simulation runs. The default val-

ue for the caster, camber and toe angles are chosen as 0º. Gear position is selected as suggested 

by the tool for the engine speed to be in the range between stall speed and max revolutions per 

minute limit. The default 2D flat road and default controller are used for all simulation runs. 

The simulation data are used to plot the trajectory, yaw rate response, lateral acceleration re-

sponse and articulation angle response of both the vehicle models. To understand the relative 

performance of the tractor-semitrailer with SFWC, the results of both models are compared with 

each other and useful conclusions are drawn. 

3. RESULTS AND DISCUSSION 

The comparison of trajectories of the two vehicles at different velocities with respect to the tar-

get path is carried out. This gives insight into the ability of the vehicle to follow the ISO DLC 

path at various speeds. Figure 3 shows the trajectory of the tractor and semitrailer units of both 

SFWC and CFWC models at speeds varying from 20 kmph to 60 kmph with a step size of 10 

kmph. One can observe that both the models trace the ISO double lane change path pretty well. 

The path traced by the units of tractor-semitrailer with SFWC matches that of the respective 

units of the CFWC model for speeds below 40 kmph. At 50 kmph speed, both vehicles show 

some instability after exiting the last turn of the DLC course. At 60 kmph the SFWC model 

tends to oscillate more than the CFWC model; however, both models complete the test without 

the lift-off of any of their wheels. Since the behaviour of both vehicles is similar at speeds be-

low 40 kmph, the trajectory of the tractor unit of SFWC model exactly matches that of CFWC. 

However, at 40 kmph speed one can observe that the semitrailer unit of SFWC traces compara-

tively an inner path. Since its path is slightly closer to that of its tractor, one can understand that 

the off-tracking posed by SFWC model is less. 

 

Figure 3. Trajectory of the tractor-semitrailer with SFWC and CFWC at various 

speeds 

Figure 4 shows the yaw rate response of the vehicles at different speeds. The yaw rate response 

of both SFWC and CFWC models match each other at 20 kmph, however, at 30 kmph there is a 

noticeable difference during the last turn of the DLC course. This difference is even more pro-

nounced at 40 kmph, the yaw rate of the SFWC model being higher during the turns. The trend 

of the yaw rate response is similar for speeds 20, 30 and 40 kmph. At 50 and 60 kmph speeds, 

the trend is quite different from the rest because of the instabilities arising due to the high-speed 

cornering. 

  

 

 

 

 

 

  

                             

40 kmph 

60 kmph 

30 kmph 

50 kmph 

20 kmph 30 kmph 
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Figure 4. Yaw rate response of the tractor-semitrailer with SFWC and CFWC at 

various speeds 

The study of the lateral acceleration experienced by the vehicle plays an important role. Figure 5 

shows the lateral acceleration response of the vehicle tractor and semitrailer at different speeds. 

There is a noise in the lateral acceleration data during the beginning of the simulation run and 

can be ignored. Again, the trend followed by the lateral acceleration response at speeds 50 and 

60 kmph is different from that of 20, 30 and 40 kmph for both the vehicle models. One can ob-

serve that the peak lateral accelerations experienced by the vehicle units occur during the turns. 

Also, the semitrailer units experience less lateral acceleration when compared to their respective 

tractors, due to the fact that, their path is comparatively a smoothened curve, which is evident 

from the trajectory plots. Interestingly, the lateral acceleration experienced by the semitrailer of 

SFWC vehicle is less when compared to that of CFWC vehicle for speeds below 40 kmph. Due 

to high speeds, the vehicles are not able to take sharp turns, which is evident from the yaw rate 

response for 50 and 60 kmph. Hence, corresponding lateral acceleration values also decrease 

when compared to those of 40 kmph. The actual curves for lateral acceleration for both units of 

SFWC at speeds 50 and 60 kmph contain a large amount of noise and hence are smoothened 

(smoothing parameter p = 0.999) for better representation. The actual plots and curve-fitting 

data can be found in Appendix 2. 

  

  

 

 

 

                        

  

20 kmph   30 kmph   

40 kmph   50 kmph   

60 kmph   

20 kmph   
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Figure 5. Lateral acceleration response of the tractor-semitrailer with SFWC and 

CFWC at various speeds 

Figure 6 shows the articulation angles of the tractor and semitrailer units of both SFWC and 

CFWC models at speeds varying from 20 kmph to 60 kmph at intervals of 10 kmph. Again, the 

trend of the articulation angle curve for speeds between 20 and 40 kmph are similar to each 

other and different from the rest of the speeds. The articulation angle of SFWC vehicle is com-

paratively higher at all the speeds, owing to the fact that the effective wheelbase of the semi-

trailer of the SFWC vehicle is smaller, the overall length being the same. 

Figure 6. Articulation angle curves of the tractor-semitrailer with SFWC and 

CFWC at various speeds 
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4. SUMMARY AND CONCLUSION 

To study the handling characteristics of the tractor-semitrailer with SFWC in comparison with 

the conventional vehicle, the DLC test is carried out, which is an obstacle avoidance manoeu-

vre. The virtual prototypes of both the vehicle types have been subjected to ISO DLC using the 

ADAMS/ Car tool at different speeds ranging from 20 kmph to 60 kmph with a step size of 10 

kmph. The SFWC model traces the target path pretty well at lower speeds; however, it is a little 

unstable at higher speeds when compared to the CFWC model. The behaviour of both vehicles 

changes significantly between from 40 to 50 kmph. The lateral acceleration response explains 

that the DLC is a very dynamic manoeuvre and can generate rapid rates of change of lateral 

acceleration. Interestingly, for speeds below 40 kmph, the lateral acceleration experienced by 

the semitrailer of SFWC vehicle is less compared to that of CFWC vehicle. One should note 

that the DLC manoeuvre is highly dependent on the driver’s steering input. The default driver 

model present in ADAMS/ Car tool is optimized for the tractor-semitrailer with CFWC. Hence, 

the actual steering input to be given to SFWC vehicles may vary. In the present study, the per-

formance of the tractor-semitrailer with SFWC is on par with that of CFWC at speeds below 50 

kmph. The vehicle’s inability to trace the ISO DLC path is more pronounced at higher speeds. 

With the development of stability control systems like ESC, optimized for tractor-semitrailers 

with SFWC, their performance would improve. 
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APPENDIX 1 

Specifications of reference tractor-semitrailer: Interstate Tractor-Trailer WB-62 

 

 

 

Figure A1. Specifications of reference tractor-semitrailer Interstate Tractor-Trailer 

WB-62 

APPENDIX 2 

The lateral acceleration response (with noise) and curve-fitting data 

    

Figure A2. Lateral acceleration response of the tractor-semitrailer with SFWC and 

CFWC at 50 and 60 kmph speed without smoothing of the curves 

 

Curve fitting data for SFWC lateral acceleration response: 

 Smoothing spline:             f(x) = piecewise polynomial computed from p 

 Smoothing parameter:       p = 0.999 

Table A2. Goodness parameters of the fit 

 SFWC Tractor SFWC Trailer 

SSE 1.907 0.871 

R-square 0.7993 0.8946 

Adjusted R-square 0.7769 0.8828 

RMSE 0.04296 0.02903 

 

 

 

 

 

 

Tractor wheelbase (W) 6.10 m 

Front overhang (F) 0.91 m 

Semitrailer wheelbase (WT) 12.80 m 

Kingpin offset (KO) 0.30 m 

Overall length (OAL) 21.03 m 

50 kmph   60 kmph   
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ABSTRACT

This paper proposes a control strategy to control the yaw rate of a 2-independent-
steering-gears vehicle operated by a driver. The approach is based on adaptive tech-
niques to account the slip effects. An extended kinematic model is used which takes
into account slipping effects through side-slip angles. A 3-steps state observer is pro-
posed to estimate a characteristic parameter defining the tyre-ground contact. This
state observer use only the value of control variables and the yaw rate measurement
of the vehicle. Thanks to the proposed approach the driver can safely steer the 2-
steering-gears off-road vehicle using one steering actuator without losing control at
high speeds as will be the case with two independent steering actuators.

Keywords: 2-steering-gears vehicle, Vehicle dynamics, Yaw rate control, Adaptive
control, State observer.

1 INTRODUCTION
The purpose of this paper is in the field of assisted ground vehicle dynamics, and more specifically
in the development of steering systems for two-steering-gears vehicles. This sector is in regain of
interest with the improvement of the on-board electronics. This improvement is highlighted in the
automotive field by the optimisation of comfort, agility and driving safety. On-board electronics
allows, when the vehicle is equipped, to handle 2 steering gears on one vehicle. Vehicles with two
steering gears offer many opportunities to improve the driver’s driving comfort:

• Vehicle dynamics are improved, especially on slippery ground.

• Complex manoeuvres that would be impossible to perform with a traditional single-steer
vehicle are now possible. Vehicle agility is improved.

• Behaviours that could endanger the driver can be avoided by the intervention of a second
steering gear. The stability of the vehicle is improved.

• From an energy point of view, the presence of two steering gears makes it possible to "dis-
tribute" the wear of the front and rear tyres. The life of the tyres is therefore increased.

In short, the presence of two independent steering gears allows the driver to have better control of
the vehicle, and human/vehicle interaction is therefore optimised.
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However, despite all these advantages, the use of a vehicle with two independent steering gears can
also be very dangerous for the driver. Indeed, without assistance, a vehicle of this type id difficult
to handle, especially at high speed. It is to answer this problem that it was chosen to develop the
two following contributions in this paper:

• The development of a control law that allows the driver to drive a 2-steering-gears vehicle
in off-road conditions without putting himself in danger.

• The development of a state observer reflecting the behaviour of the tyre-ground contact,
which is essential for the implementation of an efficient control law. The constraint of this
observation is that it must be done at the lowest cost and therefore use the fewest possible
sensors.

For this purpose, it was chosen to use a model adapted to the control, but still sufficiently sophis-
ticated to take into account the main phenomena associated to the dynamics of the vehicle and the
interactions of the tyres with the ground. Indeed, in previous works, very advanced dynamic rep-
resentations can be found [1]. But the large number of parameters makes them difficult to use for
control. In the opposite case, simple kinematic models have been developed for control purposes
[2]. However, these models are not representative of various phenomena, in particular: the lack of
grip, the vehicle inertia, or the load transfer phenomenon. In this paper a hybrid approach is used
allowing the use of simplified models adapted in real time by observers [3], [4]. These observers
are based on a simplified model of tyre/ground contact extending the traditional definition [5] of
the cornering phenomenon.

2 Vehicle modelling for control purposes
The vehicle model used to test the various control laws developed is a very simplified model of
the vehicle. The vehicle is reduced to a bicycle shape (figure 1) where the front (and the rear axle)
is considered as a single wheel. Nevertheless this modelling takes into account the phenomena of
slipping, by introducing the presence of side-slip angle, at the front, at the rear and at the G point
of the model. This model is called "Extended Kinematic Model" [6],[7].
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Figure 1. 4WS extended kinematic model

The notations used are as follows:

θ : Yaw angle

δr : Rear steering angle
δ f : Front steering angle

ur : Speed at the center of the rear gear
u f : Speed at the center of the front gear
u : Speed at vehicle G-point

βr : Rear slip angle
β f : Front slip angle
β : Global slip angle at G-point

FlR : Rear longitudinal contact force
FlF : Front longitudinal contact force
FR : Rear lateral contact force
FF : Front lateral contact force

L : Wheelbase of the vehicle

2.1 Kinematic equations
A first kinematic analysis allows us to establish the link between the speed of the rear axle ur and
the speed at the G point u as well as the link between the rear side-slip angle βr and the global
side-slip angle β .
The chassis is considered as a rigid body. The kinematic relation (1) inside the body can be written:
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~ur =~u+(LR~X1)∧ θ̇~Z1 (1)

=~u−LRθ̇~Y1 (2)

⇒




ur cos(δr +βr)
ur sin(δr +βr)

0




1

=




ucos(β )
usin(β )

0




1

−




0
Lrθ̇

0




1

(3)

The projections on the axis ~X1 and ~Y1 enable to obtain 2 scalar equations :

⇔
{

ur cos(δr +βr) = ucos(β )

ur sin(δr +βr) = usin(β )−LRθ̇
(4)

⇒





u = ur cos(δr+βr)
cos(β )

tan(δr +βr) = tan(β )− LRθ̇
ucos(β )

(5)

⇒





u = ur cos(δr+βr)
cos(β )

βr = arctan(tan(β )− LRθ̇
ucos(β ))−δr

(6)

The equations linking the speed of the front gear u f and the speed at the G point u as well as the
relation between the front side-slip angle β f and the global side-slip angle β are obtained in the
same way. The relations are as follows:

⇒





u =
u f cos(δ f +β f )

cos(β )

β f = arctan(tan(β )+ LF θ̇
ucos(β ))−δ f

(7)

2.2 Tyre force model
Due to the application of a lateral force on the wheel, during its own rotation, the tyre/ground
contact area moves from the position C0 to a position C. The angle β formed by the straight line
(C0C) and the longitudinal axis in the main wheel plane is called the side-slip angle.
The most well-known way of modelling tyre-ground contact is Pacejka’s so-called Magic Formula
[8]. This formula links, among other things, the lateral force Y and the side-slip angle β . How-
ever, this model is not suitable for an off-road application. Moreover, because of the numerous
parameters involved in this formula, it is not adapted to the control. It is chosen here to model the
tyre-ground contact using an adaptable cornering stiffness Ce as follows:

Y =Ceβ (8)

The adaptability of the value of the cornering stiffness Ce is done thanks to the "Observer" block
detailed in the paragraph 4. The general principle is illustrated in the figure 2
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Figure 2. Principe of cornering stiffness Ce adaptability

As shown in the figure 2, a linear relation (black line) with Ce constant is valid only for small
side-slip angles. To describe the real curve (black dashed line) for higher side-slip angles the slope
of the line, which is Ce, is modified in real time, this is the adaptation of the cornering stiffness
(blue dashed line).

2.3 Dynamic equations
The Physical phenomena and the modelling assumptions are as follows :

• The wheel/ground contact forces are modelled as explained in subsection 2.2 .

• Only one rigid solid is considered here, that of the vehicle’s chassis.

• Only one inertia is taken into account, that of the chassis in the yaw plane. The other inertia,
such as those of the wheels for example, are neglected.

From Newton’s second law, it is possible to determine the system of equations (9) :
{

β̇ = 1
um [Fl f sin(δ f −β )+Flrsin(δr−β )−C f β f cos(δ f −β )−Crβrcos(δr−β )]− θ̇

θ̈ = 1
Iz
[LrCrβrcos(δr)−FlrLrsin(δr)−L fC f β f cos(δ f )+Fl f L f sin(δ f )]

(9)

This is a system of ordinary differential equations (ODEs) with two inputs : δ f and δr describing
the evolution of the global side-slip angle β and the evolution of the yaw rate of the vehicle θ̇ .
To fully describe the behaviour of the vehicle in the yaw plane, three kinematic equations must be
added to the equations of system (9). This is the system of equations (10) :





β̇ = 1
um [Fl f sin(δ f −β )+Flrsin(δr−β )−C f β f cos(δ f −β )−Crβrcos(δr−β )]− θ̇

θ̈ = 1
Iz
[LrCrβrcos(δr)−FlrLrsin(δr)−L fC f β f cos(δ f )+Fl f L f sin(δ f )]

u = urcos(βr+δr)
cos(β )

βr = arctan(tan(β )− Lr θ̇
ucos(β ))−δr

β f = arctan(tan(β )+ L f θ̇
ucos(β ))−δ f

(10)

It is the equation linking the speed of the rear axle ur and the speed at the G point u that is
implemented, as it is the rear wheels that are driven.
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3 Steering law
The steering law developed is designed to assist the driver in driving the two-steering-gears vehicle
at high speed. This steering law controls the rear axle while the front axle is steered by the driver.
The main objective of this steering law is to limit the effects of slippery ground on the driver’s
driving and to make the driver feel as if he or she is driving a traditional vehicle with one steering
gear while driving on difficult ground in a vehicle with two steering gears.
As can be seen on the figure 3, the control architecture is composed of two main blocks: the control
loop and the observer, which will be detailed in the section 4. From measurements made at the
output of the vehicle model, the observer aims to reconstruct variables that feed the control law.

Figure 3. Global architecture of the control system

3.1 Principle of Yaw Rate Control

Figure 4. Yaw rate control

The target yaw rate θ̇target is obtained from a kinematic model of a bicycle shape vehicle (like
in figure 1) modelled without slippage. More precisely, the contact between the wheels and the
ground is considered as a rolling without slipping (RWS) contact. A purely geometrical analysis
allows to define the result of equation (11), defining the yaw rate of the vehicle in rolling without
slipping conditions. For a vehicle, steered by the front gear, the target yaw rate can be obtained
with the following relation :

θ̇target =
ur tan(δ f )

L
(11)
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3.2 Implementation of the control law
The error ε is defined as follows:

ε = θ̇ − θ̇target (12)

The control law is based on an exponential decrease of the error to 0. This translates mathemati-
cally into the differential equation (13):

ε̇ =−kε with k > 0 (13)

⇔ θ̈ = k(θ̇target − θ̇) (14)

From (9) and neglecting the longitudinal forces, the following equation can be written :

θ̈ =
1
Iz
[

Ar︷︸︸︷
LrCr βr cos(δ̂r)−

A f︷ ︸︸ ︷
L fC f β f cos(δ f )] (15)

The aim is to isolate the rear steering angle δr variable. Since βr depends on δr, it is not possible
to isolate it easily. A back-stepping strategy is used here, using the intermediate control variable
uβr , the target value for βr . This is illustrated in Figure 5.

Figure 5. Back-stepping Strategy

By replacing the expression (15) of θ̈ in (14), it is possible to easily isolate βr and thus determine
the value uβr :

uβr =
1

Ar cos(δ̂r)

[
Izk(θ̇target − θ̇)+A f β f cos(δ f )

]
(16)

βr and δr are kinematically related according to equation (17):

βr =

Br︷ ︸︸ ︷
arctan(tan(β )− L f θ̇

ucos(β )
)−δr (17)

And finally the the expression for δr can be determined :

δr = Br−uβr (18)

4 Cornering Stiffness observer
4.1 State observer
The purpose of an observer is to estimate an unmeasurable state X̂ , from measurable variables Y
and control variables v in order to be able to use them in the control law. Figure 6 illustrates how
a state observer is used in control.
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Figure 6. State observer

4.2 Cornering stiffness observation
As mentioned in paragraph 2.2, the contact between the tyres and the ground is modelled using a
linear relation between the lateral force Y and the side-slip angle β . The relation is in fact non-
linear, so it was chosen to adapt this coefficient Ce from this relation. The coefficient Ce is called
the cornering stiffness, so this is the cornering stiffness adaptation strategy. This strategy, shown
in Figure 7, is composed of 3 steps detailed below. The last step is of course the estimation of
the cornering stiffness, which is then fed back into the operations of the first step. The cornering
stiffness is therefore regulated.

Figure 7. Cornering stiffness observer

The notations used are as follows:

X̂ : Estimated variable
X̄ : Measured variable or reconstruction of a measurement
X̃ = X̄− X̂

Step 1 :
Here, the aim is to reconstruct the global side-slip angle β̄ from the measurement (by sensor) of
the yaw rate θ̇ . The strategy adopted here is to make converge an estimation ˙̂θ of the yaw rate to
the yaw rate θ̇ measured by sensor, using β̄ considered here as a control variable. The method for
convergence from ˙̂θ to θ̇ is to impose an exponential decrease of the error, as in paragraph 3.1:

¨̃θ =−k ˙̃θ ⇔ θ̈ − ¨̂θ =−k(θ̇ − ˙̂θ) with k > 0 (19)

The side-slip angle β̄ appears in the expression of ¨̂θ thanks to the the second equation of (9).
However, due to the non-linearity of the last two equations of the system (10), it is very difficult
to extract β̄ . It was therefore decided to linearise these equations and not to take into account the
longitudinal forces. The simplified expression of θ̈ is as follows:

¨̂θ = a11
˙̂θ +a12β̄ +b11δ f +b12δr (20)

With :

a11 =−
Ce(L2

f cos(δ f )+L2
r cos(δr))

uIz
a12 =

Ce(Lrcos(δr)−L f cos(δ f ))
Iz

b11 =
CeL f cos(δ f )

Iz
b12 =−CeLrcos(δr)

Iz
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By replacing this in equation (19) :

θ̈ − ¨̂θ =−k ˙̃θ (21)

θ̈ −a11
˙̂θ −a12β̄ −b11δ f −b12δr =−k ˙̃θ (22)

Finally :

β̄ =
θ̈ −a11

˙̂θ −b11δ f −b12δr + k ˙̃θ
a12

(23)

Step 2 :
Here, the aim is to reconstruct the global lateral force F̂La from β̄ . The strategy adopted here is
to make converge an estimation β̂ of side-slip angle to β̄ , using F̂La considered here as a control
variable. The method for convergence from β̂ to β̄ is to impose an exponential decrease of the
error, as in paragraph 3.1 and as the precedent step :

˙̃β =−kβ̃ ⇔ ˙̄β − ˙̂β =−k(β̄ − β̂ ) with k > 0 (24)

The global lateral force is defined as follows:

F̄La =Ce(β f cos(δ f − β̄ )+βrcos(δr− β̄ )) (25)

From (9) and neglecting the longitudinal forces, the following equation can be written :

˙̂β =− 1
um

F̂La− ˙̂θ (26)

By replacing this in equation (24) :

˙̄β − ˙̂β =−kβ̃ (27)

˙̄β +
1

um
F̂La +

˙̂θ =−kβ̃ (28)

Finally :

F̂La =−um( ˙̂θ + ˙̄β + kβ̃ ) (29)

Step 3 :
Here, the aim is to reconstruct the global cornering stiffness Ce. The strategy adopted here is the
MIT Rule [9] to make converge F̂La to F̄La by adapting the value of Ce.
The MIT Rule is formulated as follows:

Ċe =−τe
∂e

∂Ce
(30)

With :




e = F̄La− F̂La

F̄La =Ce(β f cos(δ f − β̄ )+βrcos(δr− β̄ ))

F̂La =−um( ˙̂θ + ˙̄β + kβ̃ )

(31)

Finally by replacing this in equation (30), the following equation can be written :

Ċe =−τ(F̄La− F̂La)(β f cos(δ f − β̄ )+βrcos(δr− β̄ )) (32)

5 Simulation results
5.1 Presentation of the global model
The Simulink model shown in Figure 8 is designed to simulate the behaviour of the 2-steering-gear
vehicle under different simulation scenarios. If tests of different control laws with different vehicle
models are to be done, the general architecture of the simulator would be maintained.
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Figure 8. Global simulator scheme

This simulator is composed of different blocks:

• "Actuator" block : In order to represent the actuators as non-ideal, they are considered as
second order systems with a 5%response time of 0.24 seconds.

• "Dynamic model" block : The evolution equations of the dynamic model are implemented
here.

• "Rear control" block : The steering law acting on the steering (rear, in this case) gear is
implemented here.

• "Observer" block: The cornering stiffness (parameter defining the tyre-ground slip) is re-
constructed in this block.

5.2 Simulation conditions
Simulations were conducted to test the developed control law and the observer. The vehicle’s
forward speed is 50 km/h and the driver imposes (from 0.5 seconds) a front steering angle of 15
degrees. A sudden change from grippy to slippery ground is simulated at 2.5 seconds (see blue
curve in figure 9).

5.3 Cornering observation results
The cornering stiffness observation results (in red) presented in Figure 9 are quite good (0.25
seconds delay) since the only measurement made to reconstruct the drift stiffness is the yaw rate
measurement.
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Figure 9. Results of the cornering stiffness observation

5.4 Steering law results
As explained in paragraph 5.2, the steering law is tested in a turn, with a sudden change of ground
during the turn. According to figure 10, without rear wheel control, the vehicle has an under-steer
behaviour: The yaw rate is lower than desired. This under-steer behaviour is accentuated after 2.5
seconds on slippery ground.

Figure 10. Yaw rate of the vehicle during test

It can be seen on Figure 11 that the control law does exactly what it is asked to do on grippy
ground. At 2.5 seconds, the sudden change of ground disrupts the system, but here again the
control law make converge the vehicle’s yaw rate to its set point.

Figure 11. Yaw rate of the vehicle during test
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6 Conclusion and futur works
The method presented in this paper fulfils the objective of providing the driver with a driving as-
sistance system that allows him to drive on slippery ground more easily than a vehicle with one
steering gear. This objective was achieved by using a control law that ensures the convergence of
the vehicle’s yaw rate towards a target yaw rate set by the driver. This control law works in parallel
with a state observer which, based on an adaptive linear model, reflects the lateral behaviour of the
tyre/ground contact.
This has been tested in simulation, with encouraging results for experimental validation on au-
tonomous mobile robots and then on a prototype off-road vehicle (buggy type) with 2 steering
gears.
In this paper, only the issue of maintaining a yaw rate has been treated and, more importantly, the
control law acts only on one steering gear. By adopting a configuration where the driver does not
act directly on one of the steering gears and by allowing the control law to act on both the front
and rear gears, the field of possibilities is greatly expanded. Future works will focus on yaw and
roll stability issues. This will require new control strategies, in particular optimal and predictive
control.
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ABSTRACT

For magnetic levitation transport systems with pillared tracks, detailed simulation
models of the coupled system of vehicle and guideway offer a valuable contribu-
tion to find a tradeoff between stiff/heavy guideway elements, required to keep dis-
turbances small for the controller, and low material consumption. This work pro-
vides a novel model of a detailed rigid multibody Transrapid maglev vehicle with
three sections moving along an infinite periodically pillared elastic guideway map-
ping the two-dimensional heave-pitch motion of the vehicle and the elastic bending of
the guideway elements. The infinite guideway is realized by moving system bound-
aries, i.e., the same few Euler-Bernoulli beams representing the current track segment
are used repeatedly to form an infinite sequence of guideway elements. The equations
of motion of the elastic beams and the rigid multibody vehicle are obtained from the
multibody modeling and simulation toolbox Neweul-M2. A detailed magnet model
in combination with a model predictive control scheme are used for the first time in a
large maglev vehicle model in this contribution. All model components are combined
and coupled in a Simulink model. Simulation results show more severe overshoots
and oscillations of the guideway deflection below the vehicle the faster the vehicle
passes, which is resulting in bigger control errors and magnet motions at the rear
end of the vehicle compared to the vehicle mid and front. Therefore, in contrast to
previous presumptions, the most critical situations are to be expected at the rear end
magnet, not at the front end.

Keywords: High-speed Maglev, Transrapid, Flexible Multibody System, Infinite
Elastic Guideway, Moving System Boundaries.

1 INTRODUCTION
To this day, the only commercial high-speed magnetic levitation (maglev) train is implemented
at the Shanghai Maglev Transportation line between Pudong International Airport and Longyang
Road Station. It is based on the electromagnetic suspension (EMS) technology and runs with a
maximum speed of 430 km/h during rush hour. Currently, a new high-speed maglev train with a
maximum speed of more than 600 km/h is under development at the Chinese rolling stock manu-
facturer CRRC Qingdao Sifang Co., Ltd. [1]. A prototype of the future vehicle has already been
presented to the public. The new high-speed maglev train aims to close the gap between current
high-speed railway technology with top speeds of 300 to 350 km/h and aircrafts traveling with
speeds around 900 km/h. Therefore, the new maglev train offers a notable alternative for short to
medium-haul flights regarding economic and ecologic aspects. For safety and ride comfort aspects,
a perfectly rigid guideway would be desirable. However, with increasing stiffness requirements,
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production costs and material consumption for the guideway girders are also increasing. For find-
ing a tradeoff, simulations and analyses with suitable models taking into account the dynamical
behavior of the coupled system of guideway, vehicle, magnet, and controller provide valuable
insights.

The dynamic interaction of maglev vehicles and their pillared track is investigated in numerous
previous publications focusing on different aspects. Some publications focus on the bending of an
elastic beam representing the guideway but simplify the vehicle by a point mass or single constant
force [2, 3, 4]. Others exploit a detailed vehicle model, but the guideway is modeled by rigid
elements [5, 6]. In [7, 8, 9], these approaches are combined by a rigid multibody vehicle crossing
either a short series of elastic guideway elements or a single one, respectively. The simulation
results from [9] show that for high speeds the elastic deformation of the guideway element causes
a disturbance that influences the vehicle dynamics for several seconds after the vehicle has left
the elastic guideway element. Thus, to predict the coupled system dynamics during a ride on a
periodically pillared track, a model is required that allows the vehicle to travel a longer distance,
including passing multiple elastic guideway elements. The idea of a guideway of infinite length
represented by a finite number of guideway elements is already discussed in [10] but not elaborated
in detail. Furthermore, as pointed out in [11], a more detailed vehicle model as, for example,
described in [5, 6] is desirable to obtain accurate results.

The novel aspect of this contribution is the infinite elastic guideway formed by a repeating se-
quence of a few guideway elements combined with a detailed model of a complete Transrapid
maglev vehicle consisting of three sections. Furthermore, this is the first complete vehicle model
making use of the detailed magnet model from [12] and a model predictive control (MPC) scheme
from [13], proving the usability of such kind of magnet models in combination with an MPC ap-
proach for the simulation of large maglev vehicle models. This novel model allows to investigate
the differences in dynamics at the magnets at the front and rear end of the vehicle compared to the
magnets in the middle. To the best of the authors’ knowledge, such a detailed coupled system has
not been modeled, investigated, and published before.

The subsequent sections are structured as follows. Section 2 describes the simulation model imple-
mented and used in this contribution. It comprises the mechanical models of vehicle and guideway,
magnet models and controllers, as well as the Simulink model of the coupled system. Interesting
simulation results obtained from this model regarding the guideway dynamics, control accuracy,
and the influence of guideway stiffness are presented and discussed in Sec. 3. Finally, a conclusion
follows in Sec. 4.

2 SIMULATION MODEL
In this contribution, the multibody system approach is used to set up a two-dimensional model of
a maglev vehicle moving along an infinite elastic guideway, mapping the heave-pitch motion and
vertical guideway bending. Figure 1 visualizes the complete mechanical system in an undeformed
state. In the following, the model components are explained in detail, especially the mechanical
models of vehicle and guideway as well as the coupled system.

v

rear end section mid section front end section

guideway levitation chassis
car body

standard levitation magnet
bow levitation magnetsecondary suspension primary suspension

x

z

car body coupling

Figure 1. Components of the complete vehicle model on the guideway.
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2.1 Mechanical Guideway Model
Based on the model from [9], where the guideway is modeled as single elastic Euler-Bernoulli
beam preceded and followed by a rigid track, in this contribution the track model is extended
to represent a regularly pillared elastic guideway of infinite length. For efficiency reasons, the
number of system states is kept small by using just a few guideway elements and applying the
concept of moving system boundaries as described in [10]. The basic idea of this concept is to
consider only as many guideway elements as coupled by the vehicle and use them repeatedly. To
obtain the few required guideway elements, a single guideway element is copied multiple times,
thus all guideway elements are identical.

2.1.1 Single Guideway Element
The basic unit for the guideway model, a single guideway element, is modeled as simply supported
single-span Euler-Bernoulli beam with a length of 24.768 m discretized by 24 finite beam elements
and reduced to its first three eigenmodes. For a description of the beam representing a single
guideway element please refer to [9], where detailed explanations are provided about how moving
magnet forces are applied to the beam by means of equivalent nodal forces and torques at its nodes,
and how nodal coordinates are interpolated to get the deflections at arbitrary positions between the
nodes using Hermite interpolation polynomials.

2.1.2 Moving System Boundaries
The complete infinite track is represented by a small number of identical guideway elements de-
scribed above, which are used repeatedly. The minimum number of required guideway elements
depends on the number of elements coupled by the moving vehicle. In general, the maximum
number of guideway elements covered – at least partially – by the vehicle is

ncovered = dlvehicle/lbeame+1 (1)

with the overall vehicle length lvehicle, single beam length lbeam, and the ceiling function dxe, map-
ping x to the least integer greater than or equal to x. Taking into account only the guideway
elements which are coupled by the vehicle is sufficient, because the guideway elements are decou-
pled from each other. Therefore, there is no guideway dynamics ahead of the foremost covered
beam, and the vibrating beams behind the rearmost covered one do not have any influence on the
vehicle. Nevertheless, the implementation of the coupled model in Simulink requires two more
guideway elements. First, to allow for simulations with non-constant velocity, the times when
guideway elements must be shifted to be reused is determined based on the vehicle position and
not by the simulation time. That is, as soon as the vehicle front leaves a beam there must be the
next one already available in front of it. Due to the block execution order in Simulink and also
due to graphical representation reasons, the next beam shall be in its position already before the
vehicle enters it. Therefore, an additional guideway element has to be available in front of the
foremost covered one to avoid the vehicle “falling off” the track. Second, the states of a guideway
element must be reset to their nominal values to reuse it after it has been passed by the vehicle.
Resetting the system states in Simulink requires the subsystem of the respective guideway element
to be disabled for at least one time step, which reduces the number of available guideway elements
during that time. For implementation efficiency reasons, it is advantageous to keep the number of
enabled guideway elements constant at all times. Therefore, the passed guideway element remains
disabled not just for one time step, but for the complete time it takes for the vehicle front to cross
a beam, and an additional guideway element is added to compensate for the disabled one. Thus,
the number of required guideway elements for the simulation model is

nrequired = ncovered +2 . (2)

In Fig. 2, the concept is visualized with an example. Here, the maximum number of guideway
elements covered by the vehicle is ncovered = 7 as shown in the first configuration at time t1. An
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t1:

t2:

t3:

t4:

v
system boundary

v

v

v

Figure 2. Concept of moving system boundaries: A small number of guideway elements is
used repeatedly to realize an infinitely long elastic guideway and keep the number of system
states small at the same time.

eighth guideway element is already in position in front of the vehicle, still uncovered but ready
to be entered. These eight guideway elements colored red are enabled in the Simulink model. A
ninth guideway element, colored gray, is located behind the rearmost enabled one and is disabled
in Simulink. These nine guideway elements together with the vehicle define the system boundary.
As soon as the vehicle enters the so far foremost beam, the disabled guideway element from the
rear is re-enabled, its states are reset, and it is shifted from behind the vehicle to the very front, as
shown in the second configuration at time t2. The new rearmost, now uncovered guideway element
is getting disabled. As long as the vehicle front does not reach the next beam, the guideway
element positions and thus the system boundaries remain unchanged, see the configuration at time
t3. When the vehicle enters the next beam at time t4, the shifting process is repeated. So the model
boundaries, given by the rear and front end of the currently considered track segment, are shifted
along the track together with the moving vehicle and an infinitely long elastic guideway is realized
while the number of system states is kept small. If guideway vibrations should be analyzed in
detail, an arbitrary number of additional guideway elements may be added behind the vehicle to
observe the decay in guideway oscillations after a vehicle has passed. For the analysis of the
vehicle dynamics, additional guideway elements behind the vehicle are not necessary.

2.2 Mechanical Vehicle Model
The vehicle model is based on the descriptions in [5, 6], representing a detailed two-dimensional
rigid multibody model of the maglev vehicle Transrapid mapping the heave-pitch motion in the x-
z-plane. Left and right side (y-direction) of the system are summed up. Figure 1 gives an overview
of the mechanical vehicle components.

2.2.1 Kinematics
The model consists of three sections: a rear end section, a mid section, and a front end section.
Each section consists of rigid bodies for a car body, four levitation chassis, and seven or eight
levitation magnets, respectively. Each section has the length of eight standard levitation magnets,
but the magnets are arranged in such a way that the neighboring levitation chassis of two sections
are connected by a magnet. At the front and rear end of the vehicle, bow levitation magnets are
installed that are longer and have more poles. Thus, they have a shifted center of gravity (COG)
and higher mass and inertia compared to a standard levitation magnet. The levitation chassis at the
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rear and front end of the vehicle also differ from the others, since they have a cladding mounted
resulting in a shifted COG as well as higher mass and inertia. In addition, the rear and front end
section car bodies have shifted COGs and less mass and inertia compared to the mid section due
to different geometries.

The car bodies’ kinematics are defined with respect to an inertial system. The kinematics of the
levitation chassis and levitation magnets are defined with respect to their respective car body.
The levitation magnets connecting two sections belong to the respective rearward section, i.e., the
levitation magnet between rear end section and mid section is defined with respect to the rear end
car body, and the levitation magnet between mid section and front end section is defined with
respect to the mid car body.

Each of the rigid bodies has two degrees of freedom (DOF): a translational one in z-direction and
a rotational one about the y-axis. For three car bodies, twelve levitation chassis, and 23 levitation
magnets this results in (3+12+23) ·2 = 76 DOF for the complete vehicle.

2.2.2 Force Elements
The bodies are coupled by force elements. Elastomer element couplings, represented by linear
spring-damper combinations in the model, connect the car bodies. The car bodies are supported
on the levitation chassis by the soft secondary suspension, which is realized by air spring rockers
at the real vehicle, see [6], for example. Their purpose is the decoupling of the car body dynamics
from the higher frequency vibrations of magnets and chassis. In the model, the mass and inertia of
the rockers is neglected, but their leverage is taken into account for the computation of the stiffness
of the air springs that are modeled as linear spring-damper elements. The levitation chassis are
supported on the magnets by very stiff elastomer elements, also modeled as linear spring-damper
combinations. Finally, the magnets are coupled to the guideway by the magnet forces that attract
the magnets to the guideway from below. The magnet forces are computed by the magnet model
described in the subsequent section and they are implemented as inputs to the mechanical model.
As the used magnet model computes one concentrated force per half magnet, two force elements
per standard levitation magnet are implemented. The bow levitation magnets are simplified by
three half magnets and thus three magnet forces are applied there.

2.3 Magnet Model
The electromagnet dynamics of the levitation magnets is considered by means of the magnet model
presented in [12], including the effects of magnetic reluctances, fringing and leakage flux, mag-
netic saturation, and eddy currents. Two models are available: a detailed one of a complete magnet
computing forces at each of the twelve magnet poles, and a simplified one of a half magnet sum-
ming up the forces in a single concentrated substitute force per half magnet. The detailed model is
described by a set of differential-algebraic equations (DAEs) formulated in terms of the magnetic
flux. Solving a set of DAEs is computationally intensive and, therefore, unsuitable for simulat-
ing large vehicle models with numerous magnets involved. The simplified model, however, is
described by a single ordinary differential equation (ODE), or two ODEs for a complete magnet,
respectively. The simplified model is derived from the detailed model in a numerical model re-
duction procedure yielding characteristic diagrams for the inductance, its derivative, and the force
that are exploited by the simplified model. Both model variants have nearly the same input-output
structure and almost the identical static and dynamic behavior, but the simplified one allows a
tremendous speedup of two orders of magnitude compared to the detailed one. This makes it us-
able for the model in this contribution with 21 standard levitation magnets and two bow levitation
magnets, equivalent to 48 half magnets in total. The magnet model is validated for a Transrapid’s
levitation magnet, i.e., the simulation results obtained with it in [12] match measurements very
well nearly across the whole operation range of the magnet.
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2.4 Controller
Maglev systems based on the EMS system, i.e., working with attractive magnet forces, are in-
herently unstable due to the reciprocal relation of magnet force and air gap. The electromagnets
must be actively controlled to keep the air gap in a safe range to avoid physical contact between
the vehicle and the guideway. Each half magnet has its own gap measurement unit (GMU) and is
controlled individually by its own magnet control unit, which provides the voltage for the magnet
based on the gap, acceleration, and current measurements.

A promising approach to control high-speed maglev vehicles is nonlinear MPC as stated in [14],
because system constraints and the nonlinear nature of the magnet control system can be consid-
ered actively in the control design. However, different quasi-static loads for the individual magnet
parts or just plant-model mismatch require the use of an offset-free MPC scheme. In this contri-
bution, the integral error approach from [13] is used, which is found suitable for application for
a Transrapid vehicle. See [13] for a detailed discussion and comparison to other offset-free MPC
approaches for the magnet control system. By varying the cost functional’s weighting matrices
of the underlying optimal control problem being solved at each time step to determine the control
input, the speed of the closed-loop system can be adapted in an intuitive manner. In this paper, one
parameterization of the weighting matrices and the desired gap is used for all vehicle velocities.

2.5 Coupled System
The mechanical models of the vehicle and the guideway, respectively, are set up with the Matlab-
based multibody modeling and simulation toolbox Neweul-M2 [15]. With Neweul-M2, the equa-
tions of motion are computed in symbolic form and written to Matlab files for numerical evalu-
ation. Furthermore, the equations of motion are exported to C code and compiled as mex files,
allowing to include them as S-functions in Simulink. The magnet and controller models are cre-
ated with Matlab/Simulink as well. Therefore, all system components, i.e., the mechanics, the
magnets, and the controllers, are coupled in Simulink. The Simulink model topology is shown in
Fig. 3 and the variables used there are described in Tab. 1.

The equations of motion for the vehicle and guideway mechanics (yellow blocks) are included
by means of the S-functions that are exported automatically by Neweul-M2. From the outputs of
the mechanical models, various air gaps and air gap velocities are computed by interpolating the
nodal coordinates and velocities of the guideway www, ϕϕϕ , ẇww, and ϕ̇ϕϕ using Hermite polynomials as
described in [9] and subtracting the results from the corresponding z-positions and velocities of the
magnet at the concentrated substitute magnet forces and GMUs zzzMF, żzzMF, and zzzGMU. The vector
of air gaps at the GMUs sssGMU, vector of accelerations at the GMUs z̈zzGMU, and vector of currents
III, provided by the magnet models (summed up in the green block), are the inputs for the individual
controllers (summed up in the blue block). The controllers, in return, provide the vector of magnet
voltages UUU serving as input for the magnet models together with the vectors of air gaps and air
gap velocities at the concentrated substitute magnet forces sssMF and ṡssMF. In addition to the vector
of magnet currents III, the magnets primarily provide the vector of concentrated substitute magnet
forces FFFMF coupling the vehicle and guideway subsystems. This signal is used directly as input
to the vehicle mechanics. For application of the magnet forces to the guideway, FFFMF has to be
replaced by a vector of nodal forces and torques FFFnodal. This is realized by a decomposition with
the aid of Hermite polynomials distributing the concentrated substitute magnet forces to equivalent
nodal forces and torques acting at neighboring beam nodes as described in [9]. The x-position of
the front end car body over time xxxCB is provided by a workspace variable and serves as input to the
vehicle mechanics block. Finally, the x-positions of the concentrated substitute magnet forces xxxMF
are passed to the guideway block. From these positions, quantities like the position of the vehicle
front or the overall length of already passed guideway elements are computed, which are required
for the correct arrangement of the few available guideway elements to form the track segment
within the current system boundaries.
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Figure 3. Schematic setup of the coupled model in Simulink. Descriptions of all variables
used are given in Tab. 1.

Table 1. List of variables used in Fig. 3.

variable description

xCB x-position of front end car body
xxxMF vector of x-positions of concentrated substitute magnet forces
zzzMF vector of z-positions of magnets at concentrated substitute magnet forces
żzzMF vector of z-velocities of magnets at concentrated substitute magnet forces
xxxGMU vector of x-positions of gap measurement units
zzzGMU vector of z-positions of magnets at gap measurement units
z̈zzGMU vector of z-accelerations of magnets at gap measurement units
www,ϕϕϕ vectors of nodal coordinates (translational and rotational) of beams
ẇww, ϕ̇ϕϕ vectors of nodal velocities (translational and rotational) of beams
sssMF vector of air gaps at concentrated substitute magnet forces
ṡssMF vector of air gap velocities at concentrated substitute magnet forces
sssGMU vector of air gaps at gap measurement units
UUU vector of magnet voltages
III vector of magnet currents
FFFMF vector of concentrated substitute magnet forces
FFFnodal vector of nodal forces and torques
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3 SIMULATION RESULTS
For the simulations in this contribution, the mechanical vehicle model and the magnet model
described in Sec. 2 are parameterized according to the so-called TR08, the Transrapid vehicle
which is the predecessor of the vehicle running at the Shanghai Maglev Transportation line. The
MPC scheme uses the such parameterized models for its internal controller model. The guideway
beams are parameterized with data from the first generation of concrete guideway at the 30 km
test facility in northern Germany (TVE) as provided by [11]. No pre-buckling of the beams is
modeled, but they are undeflected in the unloaded state when their own weight is the only applied
force acting on them.

In the following, the presented model is used to simulate a Transrapid vehicle with three sections
moving along a periodically pillared infinite elastic guideway with various velocities. Different
model characteristics are examined such as the guideway dynamics below a passing vehicle as well
as the air gap’s control accuracy and the magnet motion at different positions along the vehicle.
Moreover, the influence of different guideway stiffness values on the mechanical magnet dynamics
is analyzed.

3.1 Guideway Dynamics
Figure 4 shows the deflection of a single guideway element at mid span wmid versus the position
of the foremost magnet force xMF,front, while the vehicle is passing with different velocities. At
xMF,front = 0, the foremost magnet force enters the beam and leaves it again at the first dashed
vertical line. Thus, the complete beam is covered by the vehicle until the rearmost magnet force
enters the beam at the second dashed vertical line. Finally, at the last dashed vertical line the
rearmost magnet force leaves the beam, which is then uncovered and can oscillate freely.

In contrast to the corresponding but preliminary study in [9], the guideway element is now com-
pletely covered by subsequent vehicle sections for some time, which allows the analysis of its
dynamic behavior under the load of the passing vehicle. In the quasi-static case, here represented
by a vehicle speed of 18 km/h, the deflection smoothly increases with increasing overlap of vehicle
and beam, reaching a value of nearly 6 mm when the beam is covered completely, and decreases
again to zero when the vehicle leaves. The higher the velocity of the passing vehicle, the more
severe overshoots and oscillations are visible, meaning more challenging disturbances for the con-
trollers at the mid and rear vehicle sections to deal with.

The dynamics of the deflections in Fig. 4 can be explained as follows. The bending of an Euler-
Bernoulli beam is described by a partial differential equation of second order in time, see [10],
for example. For constant vehicle velocity, the excitation of the beam caused by the increasing
load of the entering vehicle adopts the shape of a ramp signal. The same holds for the unloading
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Figure 4. Deflection of a single guideway element at mid span versus position of the foremost
magnet force for various velocities.
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process with a decreasing load when the vehicle leaves the beam. The ramp shape of the excitation
approximates more and more a step shape the faster the vehicle is running. Thus, the overshoot
and oscillations visible in the beam deflection for high velocities approximately represent a step
response of a second order system. A higher velocity, i.e., a more step-like excitation, results in
a stronger overshoot and oscillations of the beam with its eigenfrequency, which in turn induce
vibrations to the vehicle.

Based on these results, for such high velocities a higher guideway stiffness is strongly recom-
mended to reduce the guideway deflections and thus make the control task easier. However, this
increases the production effort for the guideway, which highlights the necessity of finding a trade-
off between acceptable effort and girder elasticity manageable by the magnet controller.

3.2 Air Gap Control Accuracy and Magnet Motion Along the Vehicle
This section investigates the control accuracy and the magnet motion at different positions along
the vehicle and for different vehicle velocities. From a control design perspective, there must be a
compromise to keep the air gap within a safe range and simultaneously reduce the magnet motion
to improve the ride comfort. The relative air gap control error ∆s/sdes = (smeas− sdes)/sdes, i.e.,
the relative deviation of the measured air gap smeas from the desired air gap sdes measured at the
GMUs of magnets located at the very rear end, in the middle, and at the very front end of the
vehicle, respectively, are plotted in the upper row of Fig. 5. The second row of Fig. 5 shows the
normalized absolute magnet motion z/znom with the nominal magnet z-position znom being at sdes
below the undeformed beam.

At all three considered positions along the vehicle, the air gap control error grows with increasing
vehicle speed. This comes along with an increasing phase shift of the magnet motion with re-
spect to the guideway deflection with increasing velocity. The faster the vehicle passes, the farther
behind the point where two guideway elements adjoin is the point where the magnet reaches its
highest position. One reason for these effects is more oscillating guideway dynamics, see Fig. 4.
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Figure 5. Relative air gap control error and normalized absolute magnet z-positions at GMUs
of magnets at the very rear end, in the middle, and at the very front end of the vehicle,
respectively. Vertical dashed lines mark the positions where one guideway element ends and
the next one begins.
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Moreover, the controller has to deal with a higher frequency of disturbances, but magnetic in-
ductance and inertia forces regarding the mechanics are limiting factors for how fast the magnet
suspension system can respond to changing air gaps.

Especially for high velocities, the biggest air gap control errors occur at the rear end of the vehicle,
while the best control accuracy is achieved at the vehicle front. The magnet’s z-motion is relatively
small at the front compared to the mid and rear end positions as well. An explanation for this
observation is that the vehicle front always enters a resting, undeflected guideway element, while
magnets in the middle and rear part enter an already deformed and possibly oscillating beam.
Therefore, the kink in the bending line at the positions where two guideway elements adjoin is
less severe for the magnets in the front area of the vehicle than in the middle part. Furthermore,
the guideway deflections for the controller to deal with at the vehicle front are smaller than at
the middle and rear end magnets, since the girder is initially unloaded and thus the bending is
still increasing while the vehicle front passes. This is also the reason for the effect revealed by
the plots in the second row of Fig. 5, that the magnet motion depends on the vehicle speed, but
differently for rear end, middle, and front end positions. While the amplitude of the oscillations
increases with velocity at the rear end, it decreases slightly in the middle and at the front end.
However, the smaller amplitudes for the vertical magnet motion at the middle and front end at
higher velocities come along with higher air gap amplitudes because of the limited performance
of the magnet suspension system. The vehicle rear end, where the biggest deviations from the
desired air gap occur, seems to be the most critical part regarding a contact between vehicle and
guideway. However, in the simulations for this contribution the air gaps are in a non-critical range
even for high velocities highlighting the performance of the MPC approach used for the magnet
controllers.

3.3 Influence of Guideway Stiffness
In this section, the influence of the guideway stiffness on the air gap control error and vertical
magnet motion is analyzed by varying the elasticity of the modeled Euler-Bernoulli beam. Young’s
modulus E takes the values 75 %, 100 %, 125 %, and 150 % of the value E0 representing the first
generation of concrete guideway at the TVE used for the studies investigated above. The upper
row of Fig. 6 shows the maximum relative air gap control error max(|∆s|)/sdes from Fig. 5 for the
different stiffness values plotted over the vehicle speed at the rear end, middle, and front end of
the vehicle for different velocities. In analogy, the amplitude of magnet motion ∆z = zmax− zmin
normalized with znom is plotted in the second row of Fig. 6. The values zmax and zmin are the
maximum and minimum, respectively, of the magnet z-position as shown in the second row of
Fig. 5. For v = 600 km/h and E/E0 = 75 %, the simulation becomes unstable quickly at the
beginning, thus no values are contained in the plots for this parameter combination.

In general, both the maximum air gap control error and the amplitude of magnet motion decrease
with increasing guideway stiffness, because the maximal guideway deflection decreases as well.
Looking at different velocities, at the rear end the effect of elasticity variation on the magnet
motion is stronger for higher velocities, whereas at the middle and especially at the front end it is
nearly equal for all analyzed velocities except for 600 km/h, for which it is even smaller. This is
caused by the more severe guideway oscillations that the rear end magnet has to deal with while
it leaves the beam. The quite sudden unbending of the beam for high vehicle speeds leads to an
overshoot, see Fig. 4, meaning that the beam is bent upwards while the rear end magnet is still
under it. The small influence of elasticity variation at the front end for 600 km/h is also clearly
visible in the maximum air gap control error.
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Figure 6. Maximum air gap control error and amplitude of vertical magnet motion at the very
rear end, in the middle, and at the very front end of the vehicle, respectively, for different
guideway elasticity values E/E0 plotted over different velocities.

4 CONCLUSIONS
The requirements for the guideway of a high-speed maglev system are contradictory. For the ve-
hicle’s magnet suspension system, girders would be preferable that are as stiff as possible to keep
the disturbances due to bending small. On the other hand, this goes along with intensive material
consumption and expensive production costs, but economic viability is essential for competitive-
ness with other transportation systems. This publication makes a contribution towards finding a
tradeoff between these opposing requirements using a detailed model of a Transrapid vehicle with
three sections traveling on an infinite elastic guideway mapping the two-dimensional heave-pitch
motion of the vehicle. The system dimension is kept small due to system boundaries moving along
with the vehicle allowing to reuse the same few guideway elements for the guideway again and
again. The faster the vehicle moves, the more severe are overshoot and oscillations of the guide-
way deflection below the passing vehicle resulting in bigger magnet motions and air gap control
errors at the middle and rear end of the vehicle compared to the vehicle front end. A remarkable
new result is that controlling the vehicle rear magnets seems to be the most critical part at high
speeds due to relatively intense guideway dynamics at the rear end. The situation at the vehicle
front is even less critical than at the middle of the vehicle, where the difference between the slopes
of the two adjacent bending lines is largest because both beams are maximally deflected at this
moment. The same tendency holds also for the influence of the guideway elasticity on the magnet
motion. It is smaller at the vehicle front than at the middle and rear parts, but at all locations a
higher stiffness is advantageous due to smaller guideway deflections.

For further investigations with this model, additional guideway disturbances like offsets at adjoin-
ing girders and at adjoining stator packs could be taken into account. However, the disturbance
due to guideway deflection is dominating. Another scenario that can be investigated with this
model is the failure of one or several levitation magnets, to investigate if neighboring magnets are
able to take over the additional load. Furthermore, analyzing the relation between span-crossing
frequency, beam eigenfrequency, and speed of the magnet control closed-loop system are planned
to analyze potential resonance effects and favorable parameters regarding the ride comfort.
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ABSTRACT
The dynamical behavior of Elastic Multibody Systems (EMBS) is often analyzed us-
ing virtual prototypes described by high-dimensional systems of differential equa-
tions. Model Order Reduction (MOR) is a key step to permit efficient system eval-
uations by approximating the full system with a reduced order surrogate model. It
is one challenge in MOR of EMBS, to describe the dynamics induced through the
coupling of bodies in the reduced system. In this contribution, a workflow for the re-
duction of EMBS with fast rotating bodies is presented. The rotation causes a change
of dynamical behavior due to inertia forces and, therefore, cannot be neglected. In the
scope of this work a linear description of rotating bodies with constant angular veloc-
ity is given. Different projection-based MOR techniques are compared and applied to
an industrial model of a helicopter with rotating rotor. For this purpose, a short in-
troduction on modeling of EMBS and MOR is given. Substructured reduction is then
contrasted to the reduction of the coupled system for modal reduction techniques, mo-
ment matching based on Krylov subspaces, and Proper Orthogonal Decomposition.
The approximation errors of the reduced systems are compared in frequency domain.
It is shown that rotation-dependent terms are essential to describe the dynamic be-
havior of the system correctly. Reduced models with low approximation errors and
large speed-up are obtained with substructured Proper Orthogonal Decomposition and
outperform the standard techniques modal truncation and Craig-Bampton reduction.

Keywords: Elastic Multibody System, Rotating Body, Model Order Reduction, Rotor
Dynamics.

1 INTRODUCTION
Elastic Multibody Systems (EMBS) are often simulated to study the dynamical behavior of com-
plex mechanical systems. High complexity of the underlying models and increasing demands
on details make the use of Model Order Reduction (MOR) inevitable. MOR aims at generating
reduced models that allow numerically efficient system evaluations with a small approximation
error in the mathematically defined space of interest. Classical reduction approaches in the field of
EMBS, e.g., the Craig-Bampton-Method (CBM) [1], reduce the different bodies separately with
modal MOR techniques and then build the reduced system by assembling the reduced bodies.
However, these standard methods can not always account correctly for the interaction between
the different bodies. Nevertheless, modal approaches are still state of the art. Input-output based
MOR techniques, instead, are often better suited for coupled systems [2]. This contribution extends
existing MOR methods for usage for EMBS with fast rotating bodies where additional, rotation-
dependent terms have to be added to the equations of motion. Furthermore, the applicability to an
industrial use case, here a helicopter model with non-rotating flexible airframe and rotating main
rotor, is demonstrated and the reduced order systems are compared. The novelty of the contribu-
tion is the application of existing MOR methods to EMBS with fast rotating bodies in a workflow
that is applicable to large scale systems.
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2 THEORETICAL BACKGROUND
2.1 Elastic Multibody Systems with Rotating Bodies
In computational mechanics, EMBS are often described with the floating frame of reference ap-
proach, see e.g. [3]. The idea is to separate the motion of the system into large nonlinear described
rigid body motion and small linear described elastic deformations with respect to a moving refer-
ence frame that is rigidly attached to the body. The equations of motion of an EMBS can then be
written as [

MMMr MMMre
MMMer MMMe

]

︸ ︷︷ ︸
=: MMM

[
q̈qqr
q̈qqe

]
= hhh, (1)

where the mass matrix MMM is separated into a submatrix MMMr which describes the rigid body dynam-
ics, a submatrix MMMe which is a block-diagonal matrix containing all element mass matrices of the
elastic bodies, and the coupling matrices MMMre and MMMer with MMMre = MMMT

er. The vectors qqqr and qqqe are
the rigid body coordinates and the elastic coordinates, respectively. In this work only rotational
rigid body motion is considered. The force vector hhh summarizes Coriolis, constraint, centrifugal,
inner and external forces.

A tool often used to describe small elastic deformations of a single body k of the system is the
linear Finite Element Method (FEM). The equations of motion of the free body k then read

MMMk
e q̈qqk

e +KKKk
eqqqk

e = fff k (2)

with external forces fff k and the linear material stiffness matrix KKKk
e that describes the linear part of

inner forces kkkk
e of the body resulting from virtual work of inner forces

kkkk
eδδδqqqk

e =
∫

V k
0

δδδ ε̇εεkT
σσσkdV. (3)

The distortion velocities ε̇εεk and the stress σσσk in Equation (3) can be expressed with the distortion
matrices BBBk

L, BBBk
N and material matrix HHHk by

δδδ ε̇εεk =
(
BBBk

L +BBBk
N
)

δδδ q̇qqk, σσσk = σσσk
0 +HHHk

(
BBBk

L +
1
2

BBBk
N

)
, (4)

see e.g. [4]. Here, σσσk
0 are pre-stresses in the body and subscripts ’L’ and ’N’ denote linear and

nonlinear parts of BBBk, respectively. For a stress-free reference configuration, σσσk
0 = 000, the inner

forces of the body k can be written as

kkkk
e =

∫

V k
0

BBBkT

L HHHkBBBk
LdV

︸ ︷︷ ︸
= KKKk

eqqqk
e

+
∫

V k
0

BBBkT

N HHHkBBBk
LdV

︸ ︷︷ ︸
II

+
1
2

∫

V k
0

(
BBBk

L +BBBk
N
)T

HHHkBBBk
NdV

︸ ︷︷ ︸
III

. (5)

With the assumption that qqqe, q̇qqe and q̈qqe are small, the nonlinear parts II and III in Equation (5)
are neglected in linear FEM and only the first integral is kept in Equation (2).

However, the situation for fast rotating bodies is more complicated and usual linear FEM is not
sufficient. If the body k underlies fast rotations, it is loaded with large inertia forces

hhhk
ωe

=−2
∫

V k
0

NNNkT
ω̃ωωkNNNkq̇qqk

edm

︸ ︷︷ ︸
=: GGGk

e q̇qqk
e

−
∫

V k
0

NNNkT
ω̃ωωkω̃ωωk (RRR+NNNkqqqk

e
)

dm

︸ ︷︷ ︸
=: KKKk

s qqqk
e

(6)
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which add to fff k on the right side of Equation (2). Here, NNNk are the finite element ansatz func-
tions, RRR is the position of a point of the undeformed body described in the reference frame, ω̃ωωk is
a skew-symmetric matrix with

ω̃ωωk =




0 −ωk
3 ωk

2
ωk

3 0 −ωk
1

−ωk
2 ωk

1 0


 (7)

and ωωωk = [ωk
1 ,ωk

2 ,ωk
3 ]

T are the angular velocities of the body k. The matrices GGGk
e and KKKk

s , defined
in Equation (6), both depend on ωωωk and are called gyroscopic matrix and spin softening matrix of
the body k, see e.g. [5].

If the assumption of small deformations should be still justified, the large inertia forces must not
result in large deformations, but only in large stress in the body. The stress is in linear approxima-
tion described by σσσk = HHHkBBBk

L and, thus, the integral II in Equation (5) is not small anymore. For
this reason, an additional stiffness has to be considered in directions of large inertia forces. This
so-called geometric stiffness depends on the stress in the body and, therefore, on the rotational
velocity of the body. It can be added to the linear equation of motion of the body by expanding
the integral II to a Taylor series at qqqk

e = 000 and just considering the terms linear in qqqk
e . This leads

to the approximation

KKKk
geoqqqk

e ≈
∫

V k
0

BBBkT

N HHHkBBBk
LdV, (8)

where the matrix KKKk
geo is called geometric stiffness matrix. The linear approximation is only valid

for a given nominal stress in the body and, thus, for a given nominal angular velocity. For this
specific velocity, the updated equations of motion of a rotating body then read

MMMk
e q̈qqk

e +GGGk
e q̇qqk

e +
(
KKKk

e +KKKk
geo +KKKk

s
)

︸ ︷︷ ︸
=: K̂KK

k
e

qqqk
e = fff k

e (9)

with GGGk
e and KKKk

s from Equation (6), KKKk
geo from Equation (8), and the updated stiffness matrix K̂KK

k
e .

For a detailed explanation see [4].

With the description of the separate bodies the equations of motion of the coupled system can
now be set up. A suitable description of a coupled EMBS is the formulation in minimal coordi-
nates qqq ∈ RN with [

qqqr
qqqe

]
= JJJqqq, (10)

where JJJ is the global Jacobian matrix of the system, see e.g. [6]. The coupled EMBS is then
described by

JJJTMMMJJJq̈qq+ JJJT
[

000 000
000 GGGe

]
JJJq̇qq+ JJJT

[
000 000
000 K̂KKe

]
JJJqqq = JJJT

[
hhhr
fff e

]
, (11)

where MMMe in MMM, GGGe and K̂KKe are block-diagonal matrices containing the corresponding matrices of
the different bodies, hhhr are the rigid body forces, and fff e are the external forces applied to the nodes
of the elastic bodies.

The matrix JJJ depends on the orientation of the reference systems of the bodies and, therefore,
Equation (11) is nonlinear. For small rotations around a reference orientation, it can be linearized
with small-angle approximation and neglect of terms nonlinear in qqq. The linearized equation of
motion of the system then reads

MMMLq̈qq+GGGLq̇qq+KKKLqqq = fff L, (12)
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but includes certain terms due to fast rotations. The index ’L’ is omitted in the following but we
always refer to the linearized system from here on. It can be interpreted as second order system

MMMq̈qq+GGGq̇qq+KKKqqq = BBBuuu,

yyy =CCCqqq
(13)

with system matrices MMM,GGG,KKK ∈ RN×N ,BBB ∈ RN×b,CCC ∈ Rc×N inputs uuu ∈ Rb and outputs yyy ∈ Rc.

2.2 Projection-Based Model Order Reduction
The dimension N of the system in Equation (13) is usually high and system evaluations are nu-
merically expensive. It is the goal of MOR, to approximate the full order system with a low order
system while simultaneously ensuring a low approximation error. In projection-based MOR this
is done by the projection of the state vector

qqq≈VVV q̃qq, dim(qqq) = N� dim(q̃qq) = n (14)

into a low dimensional subspace V = span{VVV} with the projection matrix VVV ∈ RN×n. Plugging
this into Equation (13) and left-multiplying with VVV T yields the reduced order model

VVV TMMMVVV︸ ︷︷ ︸
=: M̃MM

¨̃qqq+VVV TGGGVVV︸ ︷︷ ︸
=: G̃GG

˙̃qqq+VVV TKKKVVV︸ ︷︷ ︸
=: K̃KK

q̃qq = VVV TBBB︸︷︷︸
=: B̃BB

uuu,

ỹyy = CCCVVV︸︷︷︸
=: C̃CC

q̃qq.
(15)

The choice of VVV is the key challenge here, since there are two contrary requirements, i.e. that
the reduced system dimension shall be small, n� N, and the approximation error is requested
to be low. Classical modal approaches propose finding VVV by taking selected dominant eigen-
modes VVV = [φφφ 1, . . . ,φφφ n] of the system as its columns.

A second approach is to approximate the input-output behavior of the system. Therefore, in Krylov
reduction the transfer function HHH(s) of Equation (13) is written as a power series where s is the
Laplace variable. Now, the terms of the power series of the reduced system, that are also called
moments, are matched up to a defined order Jl around shifts in frequency domain s = σl with those
of the full system. The moments are not calculated explicitly, but are implicitly matched by the
use of Krylov subspaces. A numerically stable algorithm to produce such subspaces is the second
order Arnoldi (SOAR) algorithm, explained in [7] and [8]. Choosing the projection matrix for
Jl = 1 with

span(VVV ) = span[ (σ2
1 MMM+σ1GGG+KKK)−1BBB, . . . , (σ2

ν MMM+σνGGG+KKK)−1BBB ] (16)

for l = 1, . . . ,ν ensures
HHH(σl) = H̃HH(σl) (17)

and if CCC = BBBT,
∂HHH(σl)

∂ s
=

∂ H̃HH(σl)

∂ s
, (18)

as [9] shows. In this basic form, the order of the reduced model is always a multiple of the number
of inputs b = dim(uuu).

A third approach on generating VVV is based on balanced truncation, see e.g. [10]. It aims at
retaining just those states in the reduced system that are easy to reach and easy to observe, i.e.,
those that require little energy to be reached and yield large observation signals when excited.
The computation of the Gramian matrices that are required to detect those states is numerically
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expensive and, therefore, not practicable for large-scale systems. However, the Gramian matrix of
controllability

PPP =
1
π

smax∫

smin

F̂FF(s)F̂FF(s)Tds (19)

with

F̂FF(s) := [Re(FFF(s)) , Im(FFF(s))] ∈ RN×2b, FFF(s) =
(
s2MMM+ sGGG+KKK

)−1
BBB ∈ CN×b (20)

can be approximated with Proper Orthogonal Decomposition (POD). Therefore, ν different snap-
shots F̂FF(σl) are computed at frequencies s = σl for l = 1, ...,ν and these snapshots are combined
to

ZZZ =
[
F̂FF(σ1), F̂FF(σ2), . . . , F̂FF(σν)

]
∈ RN×2νb. (21)

The projection matrix is then build with the first n eigenvectors vvvi ∈ RN, i = 1,2, ...,n from the
eigenvalue problem

1
2νb

ZZZZZZTvvvi = λivvvi (22)

and reads VVV = [vvv1,vvv2, . . . ,vvvn]. For further details on Gramian matrices and POD, see [10] and [11].

3 REDUCTION OF ELASTIC MULTIBODY SYSTEMS WITH ROTATING BODIES
A workflow for the reduction of EMBS is outlined in Figure 1. We start with discretized flexible
bodies k = 1, . . . ,κ as used in FEM in the upper box. For the sake of simplicity, just two bodies
are illustrated here, but the procedure is also applicable for an EMBS with κ > 2 bodies. The
equations of motion of the free bodies are formulated with linear FEM. The marked points are the
coupling points that have to be defined.

If a body k underlies fast rotations, additional terms in the linear equation of motion have to be
considered. Therefore, the inertia forces are computed for a given constant rotational velocity vec-
tor ωωωk

c . In this work the multibody simulation tool Neweul-M2 [12] is used for the computation of
the inertia forces. The assumption of a constant rotational velocity is valid for many use cases and
necessary in order to obtain a linear description that represents the nonlinear rotation-dependent
effects so that this linear description can be used for linear MOR. With the constant inertia forces,
also the gyroscopic matrix GGGk

e and the spin softening matrix KKKk
s are obtained.

With the constant inertia forces hhhk
ωe
(ωωωk

c), the geometric stiffness matrix KKKk
geo can be computed

iteratively from the equilibrium hhhk
ωe
(ωωωk

c) = kkkk
e with a nonlinear static finite-element solver, here

MSC Nastran [13]. If the EMBS contains different rotating bodies, this procedure is carried out for
each of them and Equation (9) is obtained for each body. Up to here all elastic bodies are treated
separately.

The reduced model of the EMBS can now be calculated with two different strategies introduced
in [14]. One, illustrated on the left side of Figure 1, is to first couple the system and thereafter
reduce the coupled system with one of the methods proposed in Subsection 2.2. This workflow
is in the following referred to as block structure preserving reduction (BSPR). However, another
procedure that is often beneficial for the reduction of multibody systems is to divide the system
into substructures, e.g. the individual bodies of a system with κ bodies, first and then build reduced
bases separately for these bodies. The reduced bodies are afterwards coupled to obtain the reduced
coupled system. This approach is in the following called separate bases reduction (SBR) and
visualized with the right path in Figure 1. The reduced bodies are graphically indicated by sparser
grids. Reduced separate substructure models have various advantages. They are often easier to
validate [15] and provide the possibility of independent component optimization. In addition,
substructured models are useful in modern product development where different departments work
on different components [14] because substructures can be changed without having to reduce the
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Figure 1: Workflow for the reduction of EMBS with rotating bodies

whole system again. One of the most frequently used SBR methods is the CBM introduced in [1].
The CBM is an extension of simple modal truncation and combines eigenmodes of the body with
static constraint modes that define displacements due to unit forces at boundary nodes where the
bodies are connected.

4 NUMERICAL EXAMPLE
The workflow presented in Section 3 is now applied to an industrial helicopter model as shown
in Figure 2. The model of the airframe and the model of the rotor result from discretization for
FEM and have 281 992 and 3 726 degrees of freedom (dof), respectively. A typical problem here
is the approximation of the airframe with a low-rank model which can account for interactions
with a coupled rotor. This is needed, e.g., for multi-domain simulations with aerodynamic rotor
simulation tools. A basic modal truncation of the airframe model without considering the rotor
leads to a reduced model that neglects important modes, e.g., shaft-bending modes. To counteract
this, it is the state of the art approach to attach a surrogate mass that replaces the rotor inertia as
explained in [16]. The loaded model is then reduced with modal truncation and the added surrogate
mass is removed later by the use of negative boundary conditions in the coupling process. It is a
problem with this procedure to find an adequately set up surrogate mass to approximate the inertia
of a rotating rotor.

During operation, the rotor rotates with a constant velocity. This allows the application of the
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(4)

(1)

(2)�
��

(3)

Figure 2: Model of a helicopter airframe with coupled rotor and marked inputs and outputs (model
provided by Airbus Helicopters)

procedure described in Section 3 to obtain an appropriate linear model. The difference between the
rotor modeled with linear FEM alone and with the additional rotation-dependent terms introduced
in Subsection 2.1 is shown in Figure 3.

The Campbell Diagram in Figure 3a illustrates the change of blade eigenfrequencies over increas-
ing angular velocities. Here, the first 9 eigenfrequencies are shown over the angular velocity
subjected to the nominal operational velocity. The linear equation of motion of a rotating body is
only valid for a constant rotational velocity. Thus, the Campbell Diagram results from computa-
tion of the rotation dependent terms at 50 linearly spaced frequencies in the interval [0,140]% · fop
with nominal operation frequency fop. Some eigenfrequencies are strongly shifted, e.g., the first
eigenfrequency from 1.14 Hz in the non-rotating case to 6.69 Hz for rotation with fop or the third
eigenfrequency from 6.23 Hz to 17.42 Hz. Especially the blade flapping eigenfrequencies marked
with 1,3,4,6 and 9 rise strongly due to geometric stiffening. The dependency of the eigenfrequen-
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Figure 3: Change of the dynamical behavior of a clamped rotor blade due to rotation (model
provided by Airbus Helicopters)
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cies on the rotational velocity shows insistently that the dynamical behavior of the blade is strongly
dependent on its rotation and, therefore, that the equations of motion are nonlinear in general.

In Figure 3b the transfer function of two different models is compared. One is obtained from
linear FEM, alone where the rotational dependence is ignored. The other model is also linear but
contains the additional rotation-dependent terms at operational angular velocity. Input and output
for the transfer function are both set at the tip of the blade, marked with (3) in Figure 2. It can be
seen that both models behave very different. For a static load the rotating blade deforms less than
the non-rotating blade which indicates the increase of stiffness due to geometric stiffening. With
the rotation-dependent terms, the eigenfrequencies of the model change. Hereby, the amplitudes
of the transfer function shift as well. Furthermore all amplitudes of the frequency response are
lower for the stiffened rotating blade.

Both plots in Figure 3 demonstrate that the dynamical behavior of the blade is strongly dependent
on its rotation and thus, that the rotation dependent terms have to be included in the equation of
motion of the EMBS. For the reduction of the rotor and the study of the system input-output
behavior it is thus not adequate to just use the non-rotating model obtained from linear FEM.
Instead, the geometric stiffness matrix and other rotation-dependent terms from Equation (9) have
to be included in the equations of motion of the rotating blade. In the following, 4 characteristic
nodes are depicted for the study of the dynamical behavior as marked in Figure 2. They display
the deformations at the fenestron hub (1), at the coupling point of rotor and airframe which is the
main rotor hub (2), near the blade tip (3), and at the pilot’s feet (4).

5 RESULTS
In this section different reduction approaches are compared for the helicopter model. Therefore,
the relative transfer function error of the reduced system in Frobenius norm

ε =
||HHH(s)− H̃HH(s)||F
||HHH(s)||F

(23)

is calculated in the frequency band from 1 to 50 Hz with the Frobenius norm

||HHH(s)||F =
√

trace
(
HHH(s)HHHH(s)

)
. (24)

5.1 Reduction of Free Bodies
At first the different reduction methods are compared for the free bodies rotor and airframe sepa-
rately. An adequately reduced model of the separate bodies is a prerequisite for the combination
in the coupled system. In Figure 4 the airframe and the rotor are reduced separately to orders
around 100. The order of the reduced models is given in the legend in each case. Four different
models are compared for the airframe and three models are compared for the rotor. The models
are generated with the reduction techniques introduced in Subsection 2.2, model truncation (mod),
moment matching with Krylov subspaces (Krylov) and POD. In addition to that, a reduction with
an added surrogate mass is implemented for the airframe (mod am). This is done by generating
the projection matrix with a model that contains an additional surrogate mass to represent the rotor
that will be attached later. The model without surrogate mass is than reduced with the obtained
projection matrix.

The modal truncation shows the poorest results with an error in the range of 10−3 to more than 100.
As described in [10], this is because a large number of eigenmodes is needed to account for lo-
cal forces and, therefore, to describe the input-output behavior correctly. For the defined inputs
and outputs the reduced airframe model generated with an added point mass reveals a smaller ap-
proximation error because the surrogate mass attached to the rotor shaft ensures to keep relevant
shaft-bending modes in the reduced basis.

https://doi.org/10.3311/ECCOMASMBD2021-121

439



0 10 20 30 40 50
10−11

10−7

10−3

101

105

frequency in Hz

re
la

tiv
e

er
ro

rε
mod 100 Krylov 98
POD 100 mod am 100

(a) airframe

0 10 20 30 40 50
10−11

10−7

10−3

101

105

frequency in Hz

re
la

tiv
e

er
ro

rε

mod 100 Krylov 96
POD 100

(b) rotor

Figure 4: Relative error for reduced bodies

The error for moment matching depends highly on the chosen shifts σk. They are here set linearly
spaced between 0 and 50 Hz. For a reduction order of about 100, moment-matching displays
a smaller error than the modal methods. The POD allows a small approximation error for both
bodies and here never exceeds 10−2. The snapshots for POD are in this work linearly distributed
in the range from 1 to 50 Hz with steps of 1 Hz. According to the BSPR workflow, the reduced
airframe and rotor can now be coupled to obtain the reduced system.

5.2 Reduction of Coupled Elastic Multibody Systems
Figure 5 shows the reduction errors for BSPR and SBR. With the exception of modal truncation,
the comparison of both plots exhibits that the reduction errors for SBR are at least similarly small
as those of BSPR. Modal truncation with added mass and CBM are techniques developed espe-
cially for SBR and, therefore, are not applicable in the BSPR framework and only included in the
comparison of SBR. For both approaches the POD displays the smallest error.
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Figure 5: Relative error for reduced system
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For the SBR, simple modal truncation reveals large errors. This is because the reduction of the
bodies already induces a relatively large error as was shown in Subsection 5.1. In addition to
that, modal truncation can neither account for the interaction between the different bodies and
the dynamics induced by the coupling nor is it able to regard arbitrary dissipative forces, i.e.,
if GGG is not proportional to MMM and KKK, which is the case if GGG 6= 000, the eigenmodes may become
complex. The approach outlined in Section 4, were a surrogate mass is attached to generate the
reduced basis for the airfame is also presented in Figure 5b. The reduced model of the airframe
with added mass is coupled to a reduced rotor obtained from modal truncation. The error for
the resulting reduced coupled system is smaller than for the model generated with simple modal
truncation but still relatively large. The modal truncation is also improved with the CBM by adding
constraint modes which leads to a small error especially for low frequencies. Hence, both state of
the art methods CBM and modal truncation with added mass can both improve the simple modal
truncation. Nevertheless, the input-output based techniques, moment matching and POD, lead
to even smaller approximation errors for the same reduction order. Especially the POD exhibits a
good approximation to the full order transfer function. For the reduction order of 195, the maximal
relative error for POD is 10−2 in contrast to 10−1 for CBM and 101 for modal truncation with added
mass.

It is another advantage of POD is that the reduction error scales down fast with increasing reduced
orders. Figure 6 shows the relative errors for POD with SBR with reduced orders 95, 195 and 295.
While the reduced model of order 95 exhibits a relatively large approximation error between 10−3

and 100, the previously used model with 195 dof has a much smaller error especially for low
frequencies. The approximation can be further improved by increasing the reduced order to 295
with the result that the error never exceeds 10−4. This offers the possibility to choose a model
that is reduced to the respective requirements in terms of numerical efficiency and approximation
quality. If one wishes for a smaller approximation error for the POD in Figure 5b, this can be
reached by increasing the reduction order.

The reduction of the system from 285 713 dof to only 195 dof enables much more efficient evalu-
ations. The calculation of the transfer function at a single frequency point takes 56.4 CPU seconds
for the full system and only 0.05 seconds for the reduced one which is less than 0.1% and means
an enormous speed-up.
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Figure 6: Relative error of POD with SBR for different reduction orders

5.3 Comparison of Modeling Error and Reduction Error
Two different possible errors were presented in Section 4 and Subsection 5.2. One arises from
neglecting the rotation-dependent terms when formulating the equations of motion of a rotating
body and is referred to here as modeling error. This error is prevented by adding these additional
terms for a given constant angular velocity. The other error is the approximation error from reduc-
tion and is inevitable since a reduced model is necessary to enable efficient system evaluations. In
this section both errors are contrasted. Therefore, the system is excited at the blade tip in vertical
direction and the deformations at the output nodes (1), (2), (3) and (4) are computed.
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Figure 7: Influence of rotation dependent terms on vibration behavior

Figure 7 visualizes the relative error of the transfer functions for the different models related to
the transfer function of the full-order model with rotation-dependent terms at nominal angular
velocity. The errors of the reduced systems obtained from POD and CBM in the framework
of SBR are confronted with the errors of two full-order models. One, called ’full w/o rot.-dep
terms’, neglects all rotation dependent terms and the other one, called ’full w/o KKKgeo’ is a model
where geometric stiffness is neglected but all other rotation-dependent terms from Equation (9)
are contained.

The error made when using the full non-rotating rotor model or a model without geometric stiffness
is notable larger than the error of both reduced models on the presented frequency interval. Thus,
all reduced models derived from the non-rotating model cannot serve as adequate reduced order
model for the EMBS with fast rotating rotor. It can be seen, that especially the geometric stiffening
of the body has large impact on the dynamical behavior. The reduced model generated with CBM
with 195 dof approximates the full-order system better than both full-order models and exhibits
low approximation errors i.e. for low frequencies. The POD again approximates the system with
rotating rotor even better and has the smallest error over the whole frequency range. It reveals an
maximal approximation error that is smaller in 4 orders of magnitude in comparison to the models
without rotation-dependent terms.

6 CONCLUSION
This contribution presented a workflow for the reduction of Elastic Multibody Systems with ro-
tating bodies. The obtained results improve the results from standard techniques highly. It was
demonstrated that rotation dependent terms, i.e. geometric stiffness, have to be considered when
modeling systems with fast rotating elastic bodies. Based on the linear description of a constantly
rotating body with small deviations from reference configuration, projection based linear model
order reduction could be applied. Especially the reduction of the bodies separately with proper
orthogonal decomposition followed by a coupling of the reduced bodies allowed reduced models
with low approximation errors. This was shown by consideration of the transfer function error of
an industrial helicopter model. With the generated reduced, model the time needed to calculate the
transfer function of the system, could be reduced by a factor greater than 1000.
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ABSTRACT 

This work deals with the analysis of the dynamic response of a counterbalance 

forklift truck prototype when performing standard verification maneuvers, defined 

by the manufacturer’s testing protocols. The research aims at developing numerical 

tools based on multibody models to predict accurately the dynamic loads acting on 

the forklift in the conditions of interest. In particular, this study focuses on a 

specific test condition, namely the passage on a steel plate obstacle at constant 

speed, which is one of the most severe maneuvers of the reference cycle in terms of 

dynamic loads. A model of the complete forklift is developed inside a commercial 

multibody environment. It takes into account the ground/tire interactions, by means 

of a simplified nonlinear contanct model, and the load handling assembly dynamics. 

An experimental campaign is designed and conducted to asses the vehicle behavior 

when running on the obstacle, by measuring the vibrations of the chassis and of the 

mast, as well as the forces generated by the mast tilting actuators. The measured 

data are exploited for model update and validation. The numerical results provided 

by the updated model show a satisfactory accuracy. 

Keywords: Virtual Testing, Vehicle Dynamics, Tire-ground Interaction, 

Experimental Validation, Force Transducers. 

1. INTRODUCTION 

Counterbalance forklift trucks (FLTs) represent a very common equipment for material handling 

in industrial applications [1]. Usually, the vertical compliance of their suspension systems is 

mainly provided by tires, since they are not equipped with elastic elements and/or shock 

absorbers, with the vehicle being supported at three points (namely, the two front wheels and the 

pivot of the rear axle, which determine the stability triangle). In addition, solid rubber tires or 

cushion tires are adopted for most applications. These features cause the behavior of FLTs 

during motion to be significantly affected by ground irregularities, hence safety issues and high 

dynamic loads possibly being experienced [2-5]. Accordingly, new FLT prototypes 

manufactured by Toyota Material Handling Manufacturing Italy S.p.A. (Bologna, Italy), which 

promoted this research, must be verified with rigorous experimental campaigns to assess the 

actual vehicle response and measure the dynamic stresses that its main components may 

undergo during operation. Such tests are costly and time consuming, also because numerous 

transducers (typically strain gauges rosettes) are needed to monitor complex components 

properly. 
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This study aims at developing a multibody model to predict the dynamic loads experienced by a 

FLT that hits a steel plate obstacle when running in straight line at constant high speed, which is 

one of the most critical testing conditions in the manufacturer’s verification protocols. In 

particular, the final objective is implementing reliable numerical tools to achieve an accurate 

estimate of the dynamic stresses acting on the FLT main components (in particular, the chassis), 

hence possibly reducing the need for experimental tests. To the Authors’ best knowledge, most 

of the studies on FLT dynamics available in the literature dealt with the topic of vehicle stability 

[2, 6-11] or operator’s safety [12-15], whereas only few works aimed at developing predictive 

models to help the structural and durability design of FLT components [16, 17].  

A preliminary model had been developed in [5] to assess the possibility of simulating accurately 

the dynamic response of the chassis assembly, while neglecting the behavior of the load 

handling assembly, for the FLT operating unloaded. The results therein reported have been 

exploited to develop a more refined model that takes into account also the load handling 

assembly dynamics. It allows to estimate the forces acting between the mast and the chassis, as 

well as to assess both the unloaded and loaded operating conditions. The new model, 

implemented by using a commercial multibody software package, is here presented. 

2. DESCRIPTION OF THE INVESTIGATED FORKLIFT 

The studied vehicle is an electric FLT characterized by a total mass of about 6 tons and a load 

capacity of 2.5 tons. The front axle is driven by an electric motor, whereas the steering 

mechanism is located in the rear axle. The FLT is equipped with two couples of wheels, with a 

bigger radius for the front axle tires (Fig. 1 – some portions of the image are concealed due to 

NDA).  

The load handling assembly (forks, fork positioner and mast) includes two actuation systems: 

• two hydraulic cylinders (referred to as tilt cylinders) act symmetrically between the 

chassis and the mast (one on each side) and control the mast tilting angle (backward or 

forward, with respect to the vertical position);  

• one further hydraulic cylinder controls the fork positioner lifting (and the mast 

extension) through a transmission chain. 

 

Figure 1. Side view of the studied FLT during tests. 

3. EXPERIMENTAL TESTS 

3.1. Sensor setup and measurements 

Experiments were performed to characterize the behavior of the studied FLT in both static and 

dynamic operating conditions. To this purpose, the FLT was equipped with six accelerometers 

and two load cells.  

• Two piezoelectric accelerometers were placed on the left and right sides of the chassis, 

near the wheel hubs of the front axle, with vertical measuring axis.  
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• One piezoelectric accelerometer was placed on the rear part of the chassis, lying on the 

vehicle vertical-longitudinal plane of symmetry and close to the rear axle pivot, for 

measuring vertical acceleration as well.  

• One triaxial MEMS accelerometer was placed on the chassis under the operator seat, for 

monitoring the accelerations along the longitudinal, vertical and lateral directions, 

respectively.  

• Two piezoelectric accelerometers were installed on the left and right sides of the mast, 

above each tilt cylinder joint.  

• The two load cells were placed in the mast/tilt cylinders connections, replacing the joint 

pivots and measuring the axial forces exerted by the tilt cylinders (referred to as tilt 

forces). 

Acceleration and force signals were acquired with a sampling frequency of 5 kHz and 1 kHz, 

respectively. A low-pass filter (cutting frequency 50 Hz) has been applied in the post processing 

to all the signals, since no relevant frequency content was observed above 20 Hz.  

Two loading conditions were tested, namely the unloaded FLT (referred to as NL condition) and 

the FLT loaded at about 80% of its capacity (WL).  

Three different tests were conducted. In the first test, the static tire vertical loads and tilt forces 

were measured for both the NL and WL conditions, in order to assess the vehicle mass 

properties and distribution. The ground/tires normal loads were determined by means of vehicle 

weighing scales lying on a horizontal plane, with the mast in vertical position. 

In the second test, the FLT was kept still on the ground and a steel block of 500 kg was lifted 

and then rapidly released (Fig. 1). This test was meant to excite primarily the resonance 

associated with the hydraulic circuit of the tilt cylinders, hence possibly permitting to estimate 

the corresponding stiffness and damping parameters. The mast was kept tilted by 8° backwards. 

Indeed, in this configuration the tilt cylinders are almost orthogonal to the mast, thus making 

straightforward to determine their equivalent stiffness. 

The third test consisted of five passages on the obstacle carried out at constant velocity, for each 

loading condition. The mast was kept tilted by 8° backwards (consistently with the test 

mentioned above), with the forks close to the ground. 

3.2. Experimental results  

The static test showed that the actual mass distribution of the FLT closely matches the nominal 

one, without significant discrepancies. In particular, the centers of mass of both the load 

handling assembly and of the chassis assembly lie on the vertical-longitudinal plane of 

symmetry of the vehicle. 

The second experiment appeared successful in exciting the vibration mode involving the 

oscillations of the mast around its hinges. Figure 2 shows the measured tilt force acting on the 

right tilt cylinder during the test. Due to NDA, the values are normalized in this chart and in the 

ones reported hereafter. The oscillations exhibit an exponentially decaying trend, hence being 

clearly ascribable to a free vibration response. The corresponding damped natural frequency 

(about 2.5 Hz) can be easily determined by computing the Power Spectral Density (PSD) of the 

signal, while the damping factor can be estimated by using the logarithmic decrement method. 

These values can be exploited to estimate the equivalent stiffness of the tilt cylinders, by 

considering the vibrations of a simplified 1-DOF system with known inertia and natural 

frequency. The estimated stiffness and damping values are used to initialize the numerical 

model before the updating process. 

As for the third test, the measurements exhibited satisfactory repeatability, for each loading 

condition. Out-of-plane phenomena appear negligible, as the signals measured by the 

homologous sensors (i.e., on the left and right sides of the FLT) are basically coincident. In 

particular, the accelerations of the left-front axle (LFA) and the right-front axle (RFA) confirm 
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that the front wheels hit the obstacle almost simultaneously, since the maximum delay between 

the signals is 0.0006 s (namely, 3 samples). 

 

Figure 2. Tilt force measured (exp) on the right tilt cylinder. 

Figure 3 shows the analysis in frequency domain of the LFA acceleration signal for the NL 

loading condition. A major frequency peak at about 5 Hz that can be observed. By applying a 

narrow bandpass filter centered on such peak, the front and the rear axle appear in phase. Hence, 

the frequency is reasonably related to the bounce mode of the vehicle. 

Consistently with preliminary investigations [5], the signals measured by the accelerometers on 

the front axle (particularly the LFA) appear more reliable and with less noise than the others. 

Therefore, the LFA acceleration is chosen as the reference acceleration signal to be compared 

with the numerical model.  

 

Figure 3. Normalized PSD of the measured (exp) LFA acceleration. 

4. NUMERICAL MODEL AND SIMULATIONS 

4.1. Model implementation 

A numerical model of the complete FLT (Fig. 4) is implemented by using the multibody 

software RecurDyn (FunctionBay, Seongnam, South Korea). All the FLT parts are modelled as 

rigid bodies. Their mass properties are assigned based on both CAD geometries and 

experimental measurements. 

Contact ground-to-surface functions between ground and wheels are set. However, the actual 

tire compliance is modeled by using a nonlinear lumped-stiffness parameter acting between 

each wheel and the corresponding axle, estimated from the static load-deflection curve provided 

by the tire manufacturer.  

As for the load handling assembly, the lifting actuator is modeled with as a nonlinear spring that 

generates a null force when the fork positioner assembly rebounds. The tilt cylinders are 

modeled with a single linear spring acting on the FLT vertical-longitudinal plane of symmetry: 

the corresponding initial stiffness and damping values have been estimated as described in 
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Section 3.2. The load in the WL condition is a rigid block supported by the forks through 

contact functions. 

All the other joints are modelled by using ideal constraints. 

The static vertical loads on the four wheels and the static tilt forces computed with the model 

closely match the measured ones for both the NL and the WL loading conditions (error below 

1.5 %). 

Simulations of the vehicle dynamics are performed by prescribing the motion of the driving 

wheels, through velocity functions. 

 

Figure 4. Numerical model implemented with RecurDyn. 

4.2. Model updating and validation 

A preliminary sensitivity analysis permitted to identify the subset of parameters that affect the 

dynamic response of the FLT most significantly. Such subset was adopted to run the model 

updating process on the basis of a fully factorial design.  

The model accuracy was evaluated in terms of its capability to correctly predict the two 

measured quantities that are deemed essential for assessing properly the FLT dynamics, 

according to the manufacturer’s knowhow, namely:  

• vertical acceleration of the front axle, in terms of amplitude and location of the highest 

peak (generated by the impact with the obstacle), and of frequency content; 

• tilt force, in terms of amplitude and location of the highest peaks, and of frequency 

content. 

Model updating was performed by focusing on the NL case. Indeed, such loading condition is 

the most critical in terms of accelerations experienced by the FLT, hence possibly causing 

higher overall stresses. 

Figure 5 shows the comparison between the measured data and the numerical results 

(normalized with respect to the measured maximum value) concerning the NL case, for the LFA 

acceleration and the tilt force provided by the updated model. It is worth noting that the 

measured tilt force reported in the graph is the sum of the signals of both load cells, since the tilt 

cylinders are modelled with a single element. Both quantities are matched satisfactorily by the 

updated model, in terms of amplitude, main resonance and general damping. The LFA 

acceleration and tilt force peaks occurring during the obstacle/tires impact phase (at about 0.5 s) 

are slightly overestimated by the simulations. These discrepancies may be reasonably related to 

local nonlinear deformations of the tires, which are not taken into account by the implemented 

contact model. Nonetheless the numerical results are deemed sufficiently accurate. 

The set of optimal parameters obtained for the NL case were then adopted to simulate also the 

behavior exhibited by the FLT in the WL case. The comparison between the measured data and 
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the numerical results for the WL loading condition, in terms of the LFA acceleration and the tilt 

force, is reported in Fig. 6. The first peak of both monitored quantities appears largely 

overestimated. Moreover, some relevant high-frequency oscillations observed in the LFA signal 

are missed. However, the trend of the tilt force is replicated with sufficient precision. Hence, the 

accuracy of the model is still considered acceptable, although further improvements may be 

required. 

 

Figure 5. Experimental (exp) vs. numerical (sim) results, NL condition, LFA 

acceleration (left) and tilt force (right). 

 

Figure 6. Experimental (exp) vs. numerical (sim) results, WL condition, LFA 

acceleration (left) and tilt force (right). 

5. CONCLUSIONS 

The presented work investigated the dynamic response of a counterbalance forklift truck 

executing a reference operating cycle, according to the manufacturer’s testing protocols. The 

study focused on the implementations of numerical tools to predict reliably the forklift behavior 

in terms of accelerations and forces acting on the chassis, in order to help the structural design 

process during the development of new products. 

An experimental campaign was conducted to characterize the vehicle response when running on 

a steel plate obstacle at constant velocity with two different loading condition, as well as to 

estimate the main stiffness and damping properties of the system.  

A multibody model of the full vehicle was developed by using a commercial software package. 

The model takes into account the nonlinear road/wheels interaction and the load handling 

assembly dynamics. It was updated and validated by exploiting the data gathered from the 

experiments. 

The updated model proven effective in replicating the main dynamic phenomena experienced by 

the vehicle after impacting the obstacle. In particular, the accelerations and tilt forces exhibited 

by the unloaded forklift can be closely matched. The numerical results appear acceptable also 

for the loaded condition, although some discrepancies can be observed for acceleration and tilt 
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force peaks related to the impact phase.  

The future steps will aim at refining the tire/ground contact model, in order to further improve 

the model accuracy during the impact phase.  
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