
 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 1 of 9

Understanding the Real-Time Executive Daemon
(rtxd) for Linux
Cost-Minimized, Performance-Maximized Industr ial and Scientif ic Computing
What is the rtxd?
The real-time executive daemon, or the “rtxd”, is a set of Linux processes and Linux process APIs

providing a high-resolution computing time reference , a shared memory data management

architecture, and a comprehensive set of computing services for real -time and accelerated

industr ial computing applications. The rtxd transforms the s tandard Linux computing

environment into a microsecond resolution, highly instrumented, distributed computing, cl ient -

server platform.

[Keywords: Computing and Data Handling, Smart Manufacturing, Smart Cities, Autonomous Vehicles, Artificial

Intelligence, Robotics, Industrial Control, Digital Twin, Verification and Validation, Machine Learning, Multiphysics

Modeling]

Who uses the rtxd?
The rtxd began as a real-time server code in the aerospace and defense

industry and evolved over more than two decades. The rtxd is used

extensively in complex product cyberphysical development. Since the

ADEPT/rtxd release in Q1-2018, the rtxd has seen adoption in applications

spanning smart manufacturing, autonomy, industrial data and controls,

industrial digital twin systems, etc.

rtxmgr process

client API

rtxd process

client API

TCP/IP streaming
DAS service

processor core 1

processor core 5 processor core 6 processor core 7 processor core 8

Data Dictionary
[Shared Memory]

IO_assembly_1

DI/DO LDV

5565RF LDV

OL_Model_1

processor core 2

Data Dictionary
[Shared Memory]

1553_assembly

processor core 3

MIL-1553 LDV

OL_Model_2

Data Dictionary
[Shared Memory]

EthernetIP_asmb

processor core 4

Ethernet/IP LDV

OL_Model_3

8
-
c
o
r
e

X
e
o
n
 C

P
U

Primary Linux server with rtxd

<shared memory> <shared memory>

rtxmgr process

client API

rtxd process

client API

TCP/IP streaming
DAS service

processor core 1

processor core 5 processor core 6 processor core 7 processor core 8

Data Dictionary
[Shared Memory]

sim_assembly

processor core 2

Digital Twin

Data Dictionary
[Shared Memory]

Modbus_assembly

processor core 3

Modbus/TCP LDV

OL_Model_1

Data Dictionary
[Shared Memory]

rmem_assembly

processor core 4

5565RF LDV

OL_Model_2

8
-
c
o
r
e

X
e
o
n
 C

P
U

Secondary Linux server with rtxd

<shared memory> <shared memory>

Contents
What is the rtxd? ... 1

Who uses the rtxd? ... 1

The rtx daemon – Linux Real-Time Executive 2

Real-Time Computing and Data Handling

Frameworks .. 2

Real-Time Assemblies ... 4

Framework Client-Server Architecture 5

Framework Control .. 5

Performance-Optimized Real-Time Computing –

Method to the rtxd Madness 6

Data Acquisition Services ... 7

Why a “Real-Time” Linux Server? 7

Network, Databus, and Serial Communications 8

Compatible Modeling Tools 8

Real-Time Linux Comes of Age 8

©2019 Applied Dynamics International

Figure 1 – rtxd Linux Real-Time Executive

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 2 of 9

The rtx daemon – Linux Real-Time Executive
The “rtx daemon” is a set of Linux services which runs on ARM and Intel-based computers and transforms them into

full-featured real-time computers that are internally instrumented with performance, latency, jitter, and other

precision time-based measurements for all aspects of the computer architecture. The rtx daemon (rtxd) software

was developed, refined, and optimized by ADI over three decades and is now managed by the rtxd project. The goal

of the rtxd project is to simplify the development and management of time-deterministic programming.

Figure 2 – rtxd Linux Real-Time Executive

By installing rtxd on your real-time Linux servers you get, right out of the box, a set of optimized real-time services

with a multi-processor, multi-server distributed real-time computing and data handling architecture within a

scalable client-server paradigm. The rtxd dramatically reduces the engineering and IT costs of modernizing your

computing and data handling assets.

Real-Time Computing and Data Handling Frameworks
A real-time computing and data handling framework (real-time framework) is made up of one or more real-time

Linux servers operating in coordination and with time synchronization. The real-time framework provides a flexible

computational structure allowing these Linux servers to be interfaced with the real world, e.g. equipment, PLCs,

sensors, actuators, data acquisition devices, etc. and operated as a time-synchronized cyberphysical system.

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 3 of 9

Figure 3 – Real-Time Assemblies Executing in an rtxd-Installed Linux Server

When a real-time Linux server boots, the rtxd process is spawned as part of the boot process. A real-time

framework is loaded on one or more Linux servers by FTPing the set of assemblies to the participating servers along

with configuration, data connections, and data dictionary XML files. After FTPing the framework files to the server, a

framework load is commanded through the rtxd process API. This load command spawns the rtxmgr process which

proceeds to execute and control each real-time assembly executable. Client tools interface with the framework

through its TCP/IP API to get and put values, setup live streaming data, configure schedules & triggers, and interact

through a wide set of functions.

The real power of industrial real-time Linux servers comes when you make use of multi-server distributed

frameworks. The rtx daemon makes distributed computation and data handling a greatly simplified task by

including both inter-process communication and inter-server communication. A primary rtxd server is assigned to

act as synchronization and scheduling master for all Linux servers participating in the framework. Connections

between data dictionary items are defined and if connected assemblies are allocated to different servers then the

rtxd services automatically transfer data at each frame or selected frame multiple.

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 4 of 9

Real-Time Assemblies
A central element within rtxd’s approach to scalable industrial real-time Linux servers is the “real-time assembly”.

Assemblies are used to package your computation and data handling tasks into one or more executable Linux

processes which get uploaded to your real-time Linux server. Assemblies are allocated to specific processor cores on

a multi-core server (Intel or ARM) and to specific Linux servers in a distributed, multi-server deployment. Figure 4

illustrates the components of a real-time assembly and build process.

Figure 4 – Real-Time Assemblies

Each assembly includes a C/C++ model that exposes the basic functions of initialize(), step(), and terminate(). ADI’s

ADEPT Framework client tools include functions for importing Simulink and FMI models into your real-time

assembly. The simplest model provides only a set of variables in memory to read and write device driver calls in

order to pass data in and out of data dictionary items. Data dictionaries are made up of a block of shared memory

and an XML metadata specification for the dictionary, e.g. variable names, data types, dimensions, read/write

access, data range, etc. Connections between data dictionary items and logical device ports provide the mechanism

for performing real-time I/O device reads/writes.

The process of compiling a real-time assembly for ADEPT/rtxd links in user model code and protocol libraries, rtxd

services libraries, and Linux device drivers to build an executable Linux process.

Assemblies are able to access data from interfaces such as computer boards, e.g. PXI, PCIe, and local I/O resources

using Logical Devices, or LDVs. LDVs are a device driver layer that converts from procedural low-level Linux drivers

to data “ports”. Ports get connected to data dictionary items to read and write data from I/O channels, e.g. TCP/IP

and UDP Ethernet, industrial Ethernet, e.g. Ethernet/IP, Powerlink, discrete inputs. LDVs can have features such as

calibration, scaling, and protocol logic.

The rtx daemon services libraries also include dynamic, real-time scripting capability called “Schedules and Triggers”

or S&T. S&T is implemented as a logic driven real-time perturbation engine acting off data dictionary items. S&T

are commonly used to detect conditions based on a trigger expression and trigger an action, e.g. if TEMP>125 then

send alert message and set several data dictionary values to TRUE.

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 5 of 9

Framework Client-Server Architecture
The main driver for the rtxd’s client-server architecture is the desire to separate asynchronous user interaction

activities, HMI refresh, disk access, and other computationally disruptive tasks away from the industrial computing

and data handling workhorse Linux servers. The client-server architecture also happens to bring along a great deal

of other benefits including efficient and flexible control of frameworks distributed across multiple servers, access for

multiple framework users through multi-client access, and enhanced data acquisition stream scalability.

The rtxd TCP/IP APIs allow multiple clients to connect and interact with the framework for management and

operation. Figure 5 illustrates an industrial computing and data handling framework implemented using multiple

real-time Linux servers and accessed by multiple clients.

Figure 5 – Distributed Real-Time Framework Executing on Multiple Real-Time Linux Servers

Framework Control
The rtxd includes a comprehensive set of functions for loading and operating a framework. Control functions made

available through the rtxd TCP/IP client API include:

• Framework load

• Framework Start/Stop/Reset/Halt

• Data Acquisition Service configuration

• Data Dictionary item value get/put

• Data Dictionary item value override

• Schedules & Triggers configuration

ADI’s ADEPT client tools provide a user-friendly environment for working with rtxd frameworks.

Equipment (Physical World)Real-Time Linux Servers (Cyber World)Local Clients

Remote Clients

DCT

Equipment

DCT

Equipment

DCT

Equipment

DCT

Equipment

DCT

Equipment

DCT

Equipment

DCT

DCT

Data
Protocols

Equipment

DCT

Equipment

DCT DCT

DCT

Algorithms
Data

ProtocolsEquipment

DCT DCT

DCT

Algorithms
Data

ProtocolsEquipment

DCT DCT

DCT

Algorithms
Data

Protocols
Equipment

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 6 of 9

Performance-Optimized Real-Time Computing – Method to the rtxd

Madness
Real-time computing was once considered to be a bit of a black art. There are many reasons and opinions as to why

it is viewed as unusual computing. A popular view suggests real-time computing tends to be foreign due to the way

we typically learn to write software. We start with our “hello world” and we interact with the keyboard and the

screen. Next we learn to allocate some memory for our program using a malloc(). Then we learn to read from and

write to our hard disk drive for long-term data storage. We often are introduced to programming through the

concept of a main() entry point and a procedural view of computing and task design.

In real-time computing, we switch to a frequency-based set of entry points, usually associated with a step() function

in your code module. And there are a set of rules for implementing quality real-time code, including avoiding use of

malloc(), avoiding disk reads and writes, and other best practices. In general, you try to avoid iterative numerical

methods, e.g. solvers, integration algorithms, but sometimes they are unavoidable.

The rtxd software was designed and written with great effort invested in optimizing the services and architecture for

real-time performance. A fundamental aspect of the rtxd high-performance real-time capability is its data-centric

“Data Dictionary” concept that makes use of shared memory structures and APIs for accessing data from all

assemblies and connecting data from one assembly process to another with ultra-low-latency and computational

overhead. This shared memory structure lends itself naturally to distributed, multi-server real-time framework

deployments.

Figure 6 –Assemblies and Shared Memory Data Dictionaries

rtxmgr process

client API

rtxd process

client API

TCP/IP streaming
DAS service

processor core 1

Data Dictionary
[Shared Memory]

Assembly
[supervisory control]

Logical Devices

Model

processor core 5

Data Dictionary
[Shared Memory]

Assembly
[predictive quality]

Logical Devices

Model

processor core 6

Data Dictionary
[Shared Memory]

Assembly
[energy optimization]

Logical Devices

Model

processor core 7

Data Dictionary
[Shared Memory]

Assembly
[predictive maintenance]

Logical Devices

Model

processor core 8

Data Dictionary
[Shared Memory]

Assembly
[anomoly analysis]

Logical Devices

Model

processor core 2

Data Dictionary
[Shared Memory]

Assembly
[vibration analysis]

Logical Devices

Model

processor core 3

Data Dictionary
[Shared Memory]

Assembly
[continuous BIT]

Logical Devices

Model

processor core 4

8
-
c
o
r
e

X
e
o
n
 C

P
U

real-time Linux

server with rtxd

Data Dictionaries

framework data access and
interprocess communication

through data dictionaries

<shared memory> <shared memory>

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 7 of 9

The decision to make use of compiled binary assembly executables as the basic container for computing and data

handling tasks was made to get the very best real-time performance. Every computer has a fixed computational

budget. As it says in its name, rtxd is a daemon, a set of services running in the background to implement a real-

time computing framework. You get to choose how much of those services you want to make use of. You may

write your Linux applications any way you like, and you can stitch them into an assembly as much or as little as you

like. You may just pass some basic operational and/or management data into an assembly’s data dictionary to give

you client access to your application. At the other extreme, you may use rtxd as the main entry points for all your

industrial computing and data handling capability.

Data Acquisition Services
The rtxd includes a Data Acquisition Service (DAS) providing time-deterministic data logging capability allowing time-

stamped data dictionary entity values to be streamed to specified TCP/IP sockets. Using the DAS requires no user

application code and does not interfere with real-time performance. The DAS enables the logging frequency to be

configured for each data dictionary item on the fly.

Why a “Real-Time” Linux Server?
Industrial computing and data handling is an inherently frequency-based operation. At some frequency, often

involving multiple rates, input channels are read, algorithms are executed, and outputs are sent. This frequency-

based computing approach is fundamental to high-performance real-time control and is illustrated in Figure 7. At

the beginning of each time step, the computer generates an interrupt or other entry point to start computational

tasks, e.g. read inputs, run algorithms, write outputs. This set of computation repeats at every step so long as the

system is operational.

Figure 7 – Traditional Data Interfaces and Modern Industrial Ethernet Technologies

Most Industry 4.0 computing and data handing deployments won’t be used for high-performance real-time control

so why use a real-time Linux server?

An industrial computing and data handling deployment may have many functions, analysis, and data handling tasks

that won’t operate in a real-time, once-per-step type of operation. Many tasks and functions will be asynchronous

and execute on command or in response to a condition or alert.

Using the real-time Linux operating system with a real-time executive, such as the rtx daemon, provides a set of

powerful computing services that, amongst many other capabilities, sets a high-resolution time reference for your

computing environment. Accurate, microsecond-resolution time measurement of events such as time of task

initiation, time to complete task execution, and statistical variance of task behavior can be very useful for identifying

and solving anomalous, difficult to find bugs in your operational systems. Real-time computation and analysis is

Frequency Based Concepts in
Real-Time Computing

wait...

re
ad

in
p

u
ts

w
ri

te
o

u
tp

u
ts

ex
ec

u
te

al
go

ri
th

m
s

wait...

re
ad

in
p

u
ts

w
ri

te
o

u
tp

u
ts

ex
ec

u
te

al
go

ri
th

m
s

re
ad

in
p

u
ts

w
ri

te
o

u
tp

u
ts

ex
ec

u
te

al
go

ri
th

m
s

real-time jitter

t n t n+1 t n+2 t n+3

steptime (Δt)

frametime

frame n frame n+1 frame n+2 frame n+3

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 8 of 9

crucial for effectively monitoring data throughput of mixed Industrial Ethernet and legacy industrial serial/network

interfaces, e.g. Modbus, CANOpen, etc.

Beyond precision timing resolution for events and computation, real-time computing methods also bring another

powerful benefit that ties specifically to computing costs. The world of real-time computing has maintained a built-

in incentive to squeeze more computation out of a fixed computing budget. This may involve getting more control

function out of a fixed microcontroller or getting higher fidelity dynamics within a real-time simulation. The result is

that the real-time computing world has been focused on finding methods, algorithms, and technologies that get

more out of the same CPU. A good example of this can be seen with the use of shared memory structures for

communication between processes (applications). Using shared memory structures allows data to be moved from

one location to another with minimal latency. This means your CPU is tied up for a shorter duration and can return

to executing your algorithms. Using files and disk writes to share data between applications can slow down

computation by 10x to 1000x and directly increases the computational cost for your industrial computing capability.

Network, Databus, and Serial Communications
The rtxd includes software support for a wide range of industrial, automotive, and aero/defense serial, databus, and

network protocols. Supported communications include:

• UDP Ethernet (custom datagram)

• Modbus TCP

• Modbus RTU

• Ethernet/IP

• CANopen

• RS-232/422/485 (custom datagram)

• MIL-STD-1553

• MIL-AERO 1394

• ARINC-664

• ARINC-429

• ARINC-717

• SpaceWire

• More added each quarter

Configuration for each protocol is handled using CSV configuration files and data dictionary shared memory

structures to contain the streaming network data. Configuration includes packing and unpacking of data items into

messages, message scheduling, and other protocol-specific properties.

Compatible Modeling Tools
The rtxd supports a wide range of popular modeling tools including Matlab/Simulink, ADSIM, most tools that

support the FMI/FMU model exchange standard, and any other Linux compatible software that can be linked and

called via the rtxd main entry point functions, e.g. initialize(), step(), terminate().

Real-Time Linux Comes of Age
The key difference between a real-time operating system, e.g. VxWorks, QNX, RT Linux and a non-real-time
operating system, e.g. Windows, Linux, Pharlap is the level of real-time jitter. As illustrated in Figure 7, real-time
jitter is the time-based error between when the operating system begins a computation “frame” and the absolute
start time.

 Understanding

 rtxd for Linux

Rev 0.3 May-2019 Page 9 of 9

The commercial Real-Time Operating System (RTOS) market is big business with serious industry players, e.g. Intel.

Ever since its release in 1991, Linux has been hailed by many thought leaders in the computer science community as

an existential threat to the RTOS market. In the early 2000’s, Linux saw increased application for consumer

embedded electronics devices. The commercial RTOS industry exposed the poor real-time performance exhibited

by Linux and was able to draw a line in the market for where Linux would begin stealing market share and where

commercial RTOS would continue to dominate and generate significant annual software licensing and support

revenue.

In 2004, the Linux community released the “RealTime Preempt” patch, or RT Preempt. The Linux operating system,

with its generic kernel, exhibits poor real-time performance as measured by real-time jitter. A key function of any

real-time operating system is to allow frequency-based computing where a set of algorithms and/or data handling

tasks are performed at every step, and executed at some frequency. Real-time jitter represents the time-based

error associated with the operating system’s ability to begin computation exactly at the beginning of every step.

Today’s commercial RTOS offerings typically perform with 3µs to 5µs of real-time jitter at three standard deviations.

Traditional Linux, depending on the kernel configuration, could see real-time jitter as high as 500,000µs. RT

Preempt dramatically improved the performance of open source Linux. Today, well-configured open source Linux

with RT Preempt patch installed performs within the 3µs to 5µs jitter at three stddev range of commercial RTOS

offerings. Figure 4X compares the real-time jitter of open source RT Preempt Linux to a high-performance

commercial RTOS.

Figure 4X – Box Plots of Real-Time Jitter for Open Source Linux Versus Commercial RTOS

As a result of the improved Linux real-time capability, you no longer need to bear increased OS software costs to
utilize a high-performance real-time operating system and the dynamics of industrial software begin to steadily
change.

Go here to learn more about the ADEPT Framework: https://www.adi.com/products/adept-framework/

Go here to learn more about the rtx daemon: https://www.adi.com/resources/technical-library/

©Copyright 2019, Applied Dynamics International Inc. The ADEPT Framework, rtxd, and rtx daemon are trademarks

or registered trademarks of Applied Dynamics.

https://www.adi.com/products/adept-framework/
https://www.adi.com/resources/technical-library/

