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Big aerospace and military applications represent the extreme end of 
embedded-systems complexity. Here's how an embedded manager uses 
simulation and hardware-in-the-loop testing to break problems down to size. 
These guidelines can be used for any large project, or just projects that 
threaten to get out of hand.  

In the 1990s United Defense Corporation began developing a mobile howitzer for the 
U.S. Army called the Crusader. The project's cancellation in 2002 prevented this 
impressive armament system from ever seeing battle. Crusader would have disappeared 
without a trace but three years later it was reborn as the Future Combat Systems' Non-
Line-of-Sight Cannon (NLOS-C) land vehicle. More astonishing than Crusader's 
reincarnation is that the Crusader's development team is receiving as much attention for 
their simulation-centric development process as they are for their technological 
advancements.  

The Crusader program was arguably the first program in the world to implement an 
efficient and successful end-to-end simulation-centric process. Today that process is 
being adopted industrywide by contractors such as General Dynamics, Boeing, EADS, 
and Rolls-Royce, to name a few. The simulation-centric process helps the development 
team manage the complexity of today's aircraft, spacecraft, land vehicles, and weapon 
systems by improving how the team communicates requirements. The complexity and 
sophistication of these platforms always increases and involves highly complex 
embedded systems.  

At the center of the simulation-centric process is the embedded systems developer. This 
article explains how developers are affected by the simulation-centric process and what 
the various stages of the process are as they apply to a single embedded systems 
project. We'll discuss the timed deliverables at the various process stages including 
cosimulation models, real-time rapid-development units, and generational production 
prototypes.  

Simulation-centric process 
In the simulation-centric process, the team translates mechanical designs into 
behavioral simulation models. These simulation models are then used to develop model-
based control systems. These subsystem simulations and model-based code are then 
used to perform real-time hardware-in-the-loop (HIL) simulation for early integration 
testing. Each of these stages includes a lot of iteration that might change each of the 
previous stages of the process. Moving design artifacts back and forth from stage to 
stage must be effortless. Finally, the early-integration lab is transformed into the late-
stage integration facility as suppliers deliver prototypes for final acceptance testing in 
scheduled releases.  

The mark of a highly effective simulation-centric process is collaborative design and 
integration during each design simulation and real-time simulation stage. The prime 
contractor and all the subsystem suppliers contribute simulation models for each 

   



simulation stage. Each member also contributes to simulation result analysis and adds 
particular expertise to the review.  

Integrated, networked nodes 
Some big names in aerospace and defense, including Boeing, SAIC, General Dynamics, 
United Defense, Lockheed Martin, Northrop Grumman, Raytheon, Honeywell, and BAE 
Systems have begun implementing the U.S. Army's vision for the future of armed forces.
The concept includes a force made up of highly integrated networked nodes. The nodes 
include both manned and unmanned land vehicles, manned and unmanned aerial 
vehicles, and the soldier. Information is collected independently by nodes, processed in 
parallel, added to a geographic database, and made available to all the nodes. Each 
class of node is designed to operate within a specific range of the battlefield's epicenter 
and to be autonomous. Thousands of different embedded systems collect data using a 
cornucopia of sensors, communicate over numerous wired and wireless networks, and 
perform a variety of embedded functions.  

The expanse of technology developed during the dot-com boom will be used for 
fundamental shift in the capability of the armed forces. Early results have helped 
aerospace and defense companies come to grips with the immense requirements of 
testing tightly integrated embedded systems. The F/A-22 Raptor fighter aircraft has set 
the bar for aircraft and testing complexity. As flight-test expenditures snowballed, the 
U.S. Air Force implemented a new level of integration testing and simulation. Aerospace 
and defense companies are learning from this and other examples to design more 
efficient development process.  

Integrated and networked embedded systems aren't a challenge only for the aerospace 
and defense industries. BMW received some negative press over its 745i luxury sedan 
and its associated recalls. When the 745i was launched, BMW proudly touted its leading-
edge (bleeding-edge?) features managed by more than 80 embedded processors. 
Features were distributed among the many electronic control units (ECUs) that 
communicated with one another over several vehicle networks, including controller-area 
network (CAN). Numerous bugs found by end users (drivers) included unpredictable 
brake light operation, engine stalls and misfires, and periodic failures of the iDrive 
dashboard controller. Automotive companies are quickly learning the importance of 
efficient and reliable embedded system development processes and are willing to spend 
good money so they never experience BMW's pain.  

Grand visions for the future of embedded systems lead to complex design, test, and 
implementation problems. The simulation-centric process is a summary of the successful 
process development strategies used by companies such as United Defense, General 
Dynamics, Gulfstream, Boeing, and Rolls-Royce over the years and being designed into 
new development programs to manage the complexity of tomorrow's integrated, 
networked systems.  

The process in stages 
The simulation-centric process approaches complex systems with the following process 
stages:  

1. Preliminary design  
2. Simulation-based design  
3. Cosimulation  
4. Early integration  
5. Late integration  

Figure 1 illustrates the process flow. Each stage in the process has one or more inputs 
and one or more outputs. Tools are used within each stage to work with the inputs and 
develop the outputs. 



 
Figure 1: The simulation-centric process flow  

Stage 1: Preliminary design 
The simulation-centric process's preliminary design stage is similar to that of most other 
development processes. During preliminary design, the team defines high-level 
requirements for the system. These requirements may include system weight, range, 
speed, efficiency, and so on. Next the team breaks down the system into subsystems 
and specifies high-level requirements for each of those. Finally, they define the 
interfaces between subsystems. The preliminary design stage generates a high-level 
specification used to guide design efforts in the next stage of the process.  

Stage 2: Simulation-based design 
The second stage is simulation-based design. The goal of simulation-based design is to 
enable quick iterations between the mechanical design, the behavioral simulation, the 
control-systems design, and closed-loop simulation. First, solid models of mechanical 
component are developed using CAD tools. These solid models are then converted to 
behavioral models using behavioral-modeling tools. New features of these modeling 
tools allow much of this conversion to be automated. Behavioral simulations assess the 
mechanical design. Finally, behavior-simulation models are used for closed-loop 
simulation to assist control systems design and evaluation.  



Simulation-based design requires a massive collaborative team effort involving 
mechanical designers, behavioral-simulation engineers, and control-system designers. 
Team members share solid models, real-time models, and problem reports. Outputs 
from this stage of the process include solid models delivered to fabricators, real-time 
models used in cosimulation and integration, and embedded control code used for early 
integration and delivered to embedded system suppliers. The tools used to help improve 
simulation-based design efficiency are evolving quickly. Table 1 lists some popular tools 
for simulation-based design. A tool's value in the process depends as much on its ability 
to import from the previous stage as it does with assisting development of outputs for 
the next stage.  

Table 1: Stage 2: Simulation-based design 

Stage 3: Cosimulation 
The third stage, cosimulation, is a new animal for many automotive, aerospace, and 
defense companies. Program managers use a burden-rate calculation as a measure of 
the cost of using tools, machines, and facilities. A high burden rate suggests that the 
tool is expensive to operate. The real-time simulation computers used during early and 
late integration are very costly and therefore have a high burden-rate. The main 
purpose of cosimulation is to fully exercise all the subsystems and to validate embedded 
system code on a low burden rate platform (a Windows PC or Unix workstation) before 
prototype development or outsourcing begins.  

Simulation models used during cosimulation will come from the simulation-based design 
stage of the process as well as from suppliers or previous design projects. The complete 
cosimulation will typically include many smaller subsystem cosimulation projects. Each 
project will be developed by the subsystem's owners. A subsystem might be owned by a 
team of embedded system developers, mechanical designers, or both. Cosimulation 
project development begins as the simulation-based design stabilizes. Execution and 
analysis of the cosimulation occur in parallel with simulation-based design and early 
integration. Design errors discovered using cosimulation will be fed back to the 
simulation-based design stage and will trigger a design iteration. Figure 2 illustrates how
subsystem simulation and embedded code moves to cosimulation.  

 
Figure 2: Moving subsystem models and embedded system code to 
cosimulation  
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The secondary purpose of cosimulation is to create a low-cost platform (typically a 
Windows or Unix workstation) for system-integration grunt work. This includes preparing
models for real-time simulation and developing tests for reuse during the early and late 
stages of integration. The tools used for cosimulation should ideally be the same tools 
used in the two integration stages. Using the same tools for cosimulation and integration
means the effort to configure cosimulation models, document interfaces, and create test 
scripts comes earlier in the development process and isn't duplicated in integration 
testing. The cosimulation tools must support the synchronous execution of models from 
numerous modeling languages. The most prevalent cosimulation tool found in the 
aerospace/defense industry is ADI's ADvantage/GP used by Boeing, Rolls-Royce, the 
U.S. Navy, Gulfstream, and others. ADvantage/GP's is popular because its cosimulation 
project files can be delivered to the integration stage of the process and run on ADI's 
PC-based and VME-based real-time simulation computers.  

Output from the cosimulation stage includes validated embedded system code delivered 
to the embedded system supplier, projects used for real-time simulation, and test 
scripts that will be reused during integration.  

Stage 4: Early integration 
The fourth stage of the simulation-centric process is early integration. Early integration 
is the first step into real-time simulation and is the first time embedded system code is 
executed in real time. The early integration stage creates a test facility where:  

1. The performance effects of network interfaces and network architecture can be 
tested  

2. Prototype subsystems can be tested with full system complexity in-the-loop  
3. Sensors selection activities can be performed (price vs. performance effects on the 

complete system).  
4. Early human-factors testing can begin  

The early integration lab is made up of numerous synchronized real-time simulators. 
Historically, integration labs would use one large multiprocessor real-time simulation 
computer to execute all the simulation models and embedded code. Experience has 
taught us that using many small synchronized simulators reduces real-time simulation 
complexity and enables more engineers to have access to a real-time computer for their 
initial development. Figure 3 illustrates the early integration lab for a new aircraft 
project using distributed real-time simulation computers. 



 
Figure 3: Moving subsystem models and embedded system code to 
cosimulation  

Real-time systems communicate with one another using both real and simulated 
interfaces. Real interfaces might include analog and digital sensor signals and 
communication buses, such as ARINC-429, AFDX, MIL-STD-1553, CAN, and FlexRay. 
Simulated interfaces communicate information across non-electrical interfaces, such as 
the force a jet engine applies to an airframe. The simulated interface information is 
communicated using high-speed communication hardware, such as gigabit Ethernet, 
reflective memory, or a Scramnet fiber optic interface board. The distributed real-time 
systems must use a common clock between them to allow test data from one system to 
be compared accurately to that of another system.  

When dealing with networked embedded systems, a problem in one subsystem's 
simulation might originate in a different subsystem. A common clock enables post-run 
analysis to find the source of the problem. The common clock is added to distributed 
real-time systems using an external clock such as IRIG-B. Each real-time simulation is 
controlled from a remote user interface running on a PC or Unix workstation. In addition 
to control, the remote interface provides visibility inside simulation models and 
embedded code for the purpose of analysis and debugging.  

Stage 5: Late integration 
The fifth and final stage of the simulation-centric process is late-integration testing. 
Once early integration is complete, the early integration facility is transformed, 
subsystem by subsystem, into the late integration facility. As subsystems arrive from 
suppliers and development teams they're scheduled as late-integration activities. 
Subsystems are added one at a time to isolate the source of any problems. Suppliers 
might schedule the delivery of several generations of prototypes over a period of 
perhaps a year. Early generations are modular and have easy access to circuits for 
probing. Swappable daughterboards allow different microprocessors and sensor circuits 
to be accurately evaluated. Later-generation prototypes begin to look like the final 
production system. Circuits become more dense and harder to access. Cooling, 
structural rigidity, and vibration damping are all accounted for in the last generations.  



The sources of many embedded software problems are modern cockpit displays and 
their interaction with avionics and other control computers. The late integration lab will 
typically go through dozens, and even hundreds, of software upgrades before the first 
field/flight test on a new system. Test pilots will spend thousands of hours evaluating 
and testing complex controls and displays in the late-integration facility. Late-integration
facilities are often very expensive because they include millions of dollars of prototype 
equipment. The high burden rate of late-integration labs requires that all possible test 
development occurs during early integration rather than late integration.  

Developing for embedded 
Many aerospace, defense, and automotive companies in recent years have begun feeling 
as though they've lost control of their embedded systems. For example, the vast 
majority of new features added to an aircraft are implemented in an embedded system 
rather than through advancements in mechanical design or construction materials. 
Avionics computers are an aircraft's brain and as such all new embedded systems in an 
aircraft will touch the avionics computer. Many aircraft manufacturers outsource the 
complete avionics computer system. As a result, the aircraft integrator is at the mercy of
its avionics supplier to provide new features in a timely and reliable manner. As more 
and more of the cost of an aircraft is in the embedded systems, the aircraft integrator 
has control over less and less of its own product.  

Many aerospace, defense, and automotive OEMs are realizing they are in the business of 
software development and are using the simulation-centric process to regain control of 
their embedded systems. By embracing model-based control-systems development, 
OEMs are able to keep application knowledge in-house and only outsource a "dumb" 
embedded system. The so-called "operating system/application system separation" is 
used by aircraft embedded system suppliers such as Hamilton-Sundstrand, Goodrich, 
and Honeywell to describe the outsourcing relationship. In this context, operating 
system (OS) means the physical system hardware, a real-time operating system, or 
scheduler, device drivers, and a well-documented API. The application system (AS) 
includes all the application code running on the OS. The AS is developed in-house; the 
OS is outsourced.  

An embedded systems developer may find himself on either side of the OS/AS 
relationship. Regardless of which side you inhabit, you'll be asked to make deliveries 
during the cosimulation stage, the early-integration stage, and the late-integration stage
of the simulation-centric process. Communication is improved and the blame game is 
eliminated by getting the responsible technical experts in one test facility at the right 
time and completing a single test matrix. As problems are found they're characterized 
and isolated. Once bugs are isolated the owner is identified. Iterations are made, 
embedded software bugs are eliminated, and development programs are a success.  
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